
CareBot Final Report
Bolun Zhang, Chun Iao Tai, Cong Chen, Endong Sun, Haochen Shen, Jiangnan Ye,

Miao Ju, Qihan Yang, Tianrui Chen, Wenqiang Lai, Ye Mao, Zhihan Yan

Imperial College London
Electrical and Electronic Engineering

South Kensington Campus
London SW7 2AZ, UK

Abstract—The current ageing society is experiencing the ab-
sence of welfare technology to give humanistic care to vulner-
able groups, especially during the COVID-19 pandemic. Care
Robots have strong potential in today’s market, being utilised in
hospitals and homes to provide the basic support and care for
vulnerable people such as the elderly, children, and disabled. In
this report, CareBot is proposed as an intelligent assistant and
home companion which provides a series of auxiliary functions
and human-robot interaction (HRI) for especially elderly in
particularly home-care scenarios. CareBot conducts concrete
behaviours based on the speech commands from users and the
feedback from computer visions. This report primarily focuses
on CareBot’s proposed functionalities, initial technical work, and
forthcoming experiment setup.

Index Terms—home-care, elderly, human-robot interaction
(HRI)

I. INTRODUCTION

Population ageing is poised to become one of the most
significant social transformations in the global world. With the
demand for care professionals increasing, especially during the
COVID-19 pandemic, society has to face the challenge of staff
shortages in the care sector. CareBot was designed to address
this problem by assisting the elderly in particularly home-care
scenarios.

Similar to humans, CareBot could serve as a communication
tool and offer accompanies to the elders to reduce their
loneliness. In the meantime, the robot could monitor the health
condition and help to ask for first aid in emergencies.

Moreover, CareBot has many advantages over humans.
Firstly, care and professional services can often be too expen-
sive for the elderly [1]. The CareBot will be significantly less
expensive in the long-term than care service provided by a hu-
man while providing comparable services. Secondly, it could
offer endless patience to the elders who might repeat the same
question millions of times and prevent elder abuse. Thirdly, the
human caregiver typically holds private information about the
elders, and it is hard to protect the privacy. CareBot will never
reveal the information of the user to others and sometimes it
preserves dignity to elders. Last but not least, the robot will
never “forget”. A caregiver could forget to remind the elderly
to take medicines or do exercises regularly. The CareBot could
guarantee to remind the elders timely, to keep them healthy.

II. HYPOTHESES

CareBot can help the elderly to reduce loneliness and
memorise the location of important objects. On top of this, an
interactive humanoid robot is proposed to be a more effective
caring service according to the following hypotheses:

Hypothesis 1 (H1 - Health Support) CareBot can give cor-
rect health advice to enhance the well-being of the elderly.

Hypothesis 2 (H2 - Item memorization) CareBot is able to
memorise location of interested objects and aids users in
finding them.

Hypothesis 3 (H3 - Fall Detection) CareBot can detect
falling events of users in their sights.

Methods to validate and evaluate our hypotheses are dis-
cussed in Experiment Validation (VI).

III. RELATED WORK

Assistive robots, especially those aimed at elderly care, have
been a popular and rapidly developing area in recent years [2]
(figure 1). Based on existing research and development, assis-
tive robots for the elderly can be divided into two categories
[3]: rehabilitation robots and assistive social robots. The latter
can be further divided into: service type robots, which provide
services like house cleaning (Roomba [4]), navigation (Pearl
[5]), and support basic daily activities like dressed, eating,
bathing; And companion type robots, designed for enhancing
the psychological and physical health of elderly people (Paro,
Jibo, Nabaztag and Buddy). [6]–[9]

One of the most popularly studied service type robots is
the Nursebot project: Pearl. It provides two main functions:
reminding people of daily activities like taking medicines and
navigating through the nursing facilities [5], which is further
expanded to other environments. Pearl only has a simple face
to enhance the human-robot interaction experience.

Social robots Jibo, regarded as companion type personal
assistance, has no capabilities of physical manipulation [8].
However, it has an obvious social presence and virtual face.
Jibo can connect medical devices to monitor people and tell a
doctor if detecting any health issue or alarm signals.

The seal robot Paro is another companion robot that targets
elderly people. It is developed to simulate human-robot inter-
action and interactions between the elderly [6]. Paro has a soft

1



body and has eight actuators to provide movement, which is
controlled by the behaviour-generation system, so that it can
reduce the loneliness of elderly people.

The robotic puppy Aibo can play and interact with humans
like a puppy [10]. It can know his name and respond to it when
called, demonstrate many tricks according to commands and
can find its charging station itself. It has been widely studied
to assess the pet-type robot effects on the quality of life and
symptoms of stress [11].

The Robotic home assistant Care-O-bot [12] is much more
sophisticated and can realize abundant functions, incorporating
service and companion [13]. It can provide services like setting
the table, operating the electric appliance, and cleaning. It
is equipped with a manipulator’s arm to perform fetch and
carry objects tasks such as books and medicines and holding
and lifting tasks. Plus, it can provide mobility aid such as
helping the elderly stand up from the bed and walking aid,
including detecting obstacles and guiding to a target. It also
can communicate with people and call an emergency when
important signals are supervised. However, Care-O-bot is less
humanoid and may be less acceptable by users for its huge
size.

Fig. 1. Care Robots (a) Jibo (b) Aibo (c) Paro (d) Care-O-bot2 (e) Pearl

Most of the approaches introduced here address the prob-
lems of assistive robots for elderly, achieving the goals of
companionship, assistance or rehabilitation. Typically, these
approaches solve only one problem and are unable to cope
with the complex and ever-changing situations in which older
people live alone. Our proposed CareBot aims to perform
multiple tasks to address a variety of problems. For example,
solving the problem of older people who tend to forget the
location of objects; proposing solutions to health problems
for older people who are sedentary; or providing some daily
weather reminders. In addition, most existing robots offer
limited interaction with the user. In order to address the
loneliness of elderly people living alone, CareBot increases the
user experience by presenting a friendly interactive systems,
such as dialogue and following systems. Moreover, in order
not to scare the elderly, be suitable for placement in the home,
and not to hurt the elderly during its tasks, CareBot is build
on Pepper, which will be introduced more in the hardware
design section.

IV. SYSTEM DESIGN

This section outlines the key states, modules, and functions
in the autonomous care system designed for our CareBot.
It utilises interactive systems to produce a dynamic human
interactive process. This includes using the robot system to
access information from the environment to form a decision-
making system as well as demonstrating humanoid feedback
to the user. The flowchart (figure 2) highlights how the
control system achieves each of the key components by talking
through the different stages of the decision-making from the
start of the robot, to provide consistent care services.

There are two operation states: the background state and the
interactive state:

A. Background state

The background state introduces the modules that are run-
ning regularly. There are two main functions:

• Object detection: CareBot will successively detect the
presence of user-defined target objects in its sight and
store the location in a database. This will help in finding
them in the interactive state.

• Fall detection: The event trigger is designed for emer-
gencies, for example, fall detection. The robot then
applies a series of queries and actions aiming to offer
appropriate help to the user, such as sending an urgent
message to users’ relatives.

B. Interactive state

The interactive state illustrates the details of human-robot
interactions, which are mainly based on the dialogue between
users and CareBot. Four types of basic functions are included
in the Interactive state:

• Following: When the user give the command “Follow
me”, CareBot would track and follow the user until it
receives the termination command “Stop”.

• Come here: As the robot receives the “Come here” voice
command from the user, it will try to find and approach
the location of the user.

• Chat: When the user raises questions such as “what is the
weather today?”, CareBot could provide corresponding
answers.

• Find object: When the user asked for the location of
the object, CareBot would either approach the object and
inform the user, or reply “I don’t know” as an end.

V. HARDWARE DESIGN

We did intensive research on hardware and software design
to make the functions mentioned in the previous section
realizable. Here, we dig more into the technical details and
explain the hardware and software components we used in
our project.

A. Hardware

The four main hardware are: robot, camera, microphone,
and an extra processor (figure 3). They all integrated well with
our system design and the software components.

2



Fig. 2. Flow chart of the whole system design.

Fig. 3. Hardware used in the project: a) Pepper robot; b) ReSpeaker USB
Mic Array; c) OAK-D Camera; d) Raspberry Pi 4.

1) Pepper: An appropriate choice of robot is Pepper. Pep-
per is the world’s first social humanoid robot able to recognize
faces and basic human emotions [14]. It was optimised for
human interaction and is able to engage with people through
conversation. Pepper is mounted with many sensors, which
can satisfy our tasks including autonomous navigation: sonars,
laser, and bumpers at the bottom of the Pepper could handle
the obstacle avoidance. Besides, the design of the appearance
of the robot is friendly to elders that it is not too high and
strong to shock them.

2) ReSpeaker USB Mic Array: The ReSpeaker USB Mic
Array is an out-of-box device with a well-designed acoustic
structure. It uses 4 microphone arrays and 12 programmable
RGB LED indicators to build voice-enabled applications such
as Google Assistant and Alexa. There are several built-in
functions we can use with the USB mic array, such as finding

direction of arrival (DOA), voice activity detection (VAD),
beamforming, and noise suppression.

3) OAK-D Camera: The OAK-D device is equipped with
3 cameras (e.g. one 12MP colour camera and a pair of 1MP
stereo cameras) and an on-board Intel Myriad X VPU, which
has 4 TOPS computational power. Such configuration allows
us to manage computer vision tasks (e.g. object detection) on
this single device in an end-to-end manner. In other words, the
OAK-D device is able to record frames and input them into
deployed computer vision models compiled with OpenVino,
which can be processed with the VPU to obtain outputs for
specific tasks. Thus, the portability and integrality of OAK-
D make it our first choice of camera for the computer vision
tasks in our project [15]. We used 2 OAK-D cameras in our
project for fall detection and object detection respectively.

4) Raspberry Pi 4: The 2GB version of Raspberry Pi 4
Model B along with a battery pack serves as the controller
and power supply for our camera and microphone. The final
outfit is shown in figure 4.

VI. SOFTWARE DESIGN

To achieve all functions, besides additional hardware, meth-
ods such as Simultaneous Localization and Mapping (SLAM),
Computer Vision (CV), Natural Language Processing (NLP),
etc. are essential. Moreover, the Robot Operating system
(ROS) integrates all the modules. The following part further
breaks down the software details and explains how they are
connected in ROS.

A. NAOqi Driver
Since Pepper itself are not capable of running ROS, we

use the NAOqi Driver to bridge the Pepper NAOqi operating
system and the Robot Operating System (ROS). After con-
figuration, this driver brings up all the sensor data through

3



Fig. 4. Overall outfit of our system, including a Pepper robot, a ReSpeaker
USB Mic Array and two OAK-D Camera attached on a wood frame, and a
Raspberry Pi 4 stored in a bag

different topics and services in the ROS end, and allows us to
use all the Naoqi APIs for Pepper.

B. Multi-Device Interaction

Running all ROS nodes on the Raspberry Pi is imprac-
tical, due to its limited computational power. Additionally,
NAOqi APIs requires ROS with kinetic distribution, which
only supports Python 2. Whereas most packages for computer
vision are in Python 3, implying that various ROS distributions
should be managed. The ideal solution is to allow several
devices to connect with one another, with each device running
a distinct ROS distribution and doing various tasks, as shown
in figure 5. The first step is to install SSH server on the
Raspberry Pi and PC respectively. Afterwards we add the
other device’s IP address and hostname to /etc/hosts.
Finally, we utilise the Raspberry Pi as the master device
to execute roscore and specified ROS_MASTER_URI and
ROS_HOSTNAME in the .bashrc file.

Fig. 5. Multiple devices for interaction and their corresponding ROS
distributions and respective tasks.

C. Functionalities: Background State

Background state consists of functionalities that are con-
stantly operating without triggering signals. As the main com-
ponent of background state, computer vision helps CareBot

monitor the real world through cameras constantly. An overall
background state system design is shown in figure 6: The
cameras conduct detection and sends both the class labels and
pose estimations to the Raspberry Pi. Raspberry Pi, running
two ROS nodes, keeps publishing the received information to
the corresponding topics. In PC, a ROS node subscribes to
the corresponding topic and writes the data to a database. It
also provides a server to access the database. The following
sections explain how to set up the camera and the CV models
we used.

Fig. 6. Design architecture of the background state
.

1) Object detection node: As stated in the hardware section,
the OAK-D camera undertakes on-board end-to-end computer
vision tasks with the help of supporting frameworks, toolkits
and deep learning models.

OpenVINO is a back-end framework for the optimization
and the acceleration of the deployed AI models in the inference
process [16]. It generates a cost-effective engine from models
of prevalent platforms (e.g., PyTorch, TensorFlow) for the
deployment on different devices, including the Intel VPU in
OAK-D. Hence, OpenVINO is used in this project to optimize
object detection models to be placed on the camera with less
computational power.

The toolkit for the camera is Depth AI, which allows for
convenient connection, configuration, and communication with
OAK-D devices. It is used to control the camera pipeline and
demonstrate images based on OpenCV. It also integrates the
deploying process involved with OpenVINO.

The object detection model used in this project is Tiny-
YOLO v4. It is a compressed variation of YOLO and pre-
trained on the COCO dataset composed of 80 classes [17] (we
use five: bottle, mouse, umbrella, remote, and cellphone). It
has fewer parameters and offers faster inference (FPS: 39.8 1)
with relatively high accuracy, making it suitable for real-time
object detection (figure 7).

In terms of the overall procedure, the camera consecutively
detects and returns the the results (e.g. the coordinates of
bounding box corners, the labels of detected objects) to the
Raspberry Pi. The Raspberry Pi is responsible for publishing
a custom message to the detected_object topic. The
message contains the following information: the flags that
indicate the presence of object, the rotation angle between

1Depthai Model Zoo https://zoo.luxonis.com/

4



Fig. 7. Demonstration of CareBot performing real-time object detection.

robot and detected object, and the pepper location where it
detected the object. To find the rotation angle, the horizontal
pixel difference between the coordinate of bounding box center
Fc and that of camera view center Bc is first obtained. This
pixel difference is then multiplied with the vertical angular
resolution ∆θ of the camera to get the angle that the robot
has to rotate. It is worthy to note that the vertical angular
resolution is computed by dividing the vertical field of view
(VFOV) by the total number of vertical pixels.

R = (Fc −Bc) ·∆θ

∆θ =
V FOV

Pv

where Fc and Bc denotes the centre of the field of view
(FOV) and bounding box respectively and ∆θ defines the
vertical angular resolution of the camera.

2) Database: To better manage the storage of object in-
formation, a MongoDB database is implemented in the PC.
MongoDB is a source-available cross-platform document-
oriented database program. MongoDB is classified as a
NoSQL database, which is known for its high query speed and
scalability [18]. The reasons for having a database include:

• Enabling long-term data storage;
• Allowing concurrent read and write operations;
• Providing an unique interface for any nodes requiring

object information.

Fig. 8. Illustration of network topology simplification with database

Thanks to the scalability of MongoDB, the current database
can be easily expanded to handle more data of different
structures (e.g., memorising important events).

3) Fall detection node: The pose detection model used
in this project is MoveNet, an ultra-fast and accurate model
that detects 17 keypoints of a body to extract the skeleton-
pose. The model consists of encoder, mapper, and decoder,
where the encoder has five convolutional layers, the mapper
has four fully connected layers and the decoder has five sets
of one convolutional layer followed by one up-sampling layer
subsequently followed by one max-pooling layer. The final
output layer is convolutional layer to output skeleton-pose.
Such a light model speeds up the real-time pose estimation
[19].

Then we build an upper layer MLP to do the pose classifi-
cation based on the features extracted from the 17 keypoints,
where we set the threshold as 0.9 for classification, controlling
the sensitivity of fall detection.

Similar to object detection, the human fall detection is also
performed by using OAK-D camera. Models are transferred
into .blob to match Depth AI toolkit, which can be recog-
nised by OpenVINO. The cameras’ embedded VPU combining
with the framework OpenVINO accelerates the AI model
computing, thus saving time and computing power to achieve
real-time fall detection.

The camera keeps doing detection and returns the result
(Fall or Normal) to the Raspberry Pi. Then the ROS node
will publish a message to the detected_fall topic, which
contains a variable tells the subscriber (the NLP master node)
whether the subject has fallen or not.

D. Functionalities: Interactive State

Interactive state is composed of functionalities that require
triggering signals. As shown in figure 2, most of the functions
are triggered with dialogues. Hence, NLP plays a significant
role in the interactive state. An overall interactive state system
design is shown in figure 9: The microphone, doing sound
source localization and speech detection, returns the sound
source angle and detected word string to the Raspberry Pi.
A master_NLP node will then takes different actions based
on the word received. If any keyword is detected, the master
node will trigger a function and call the corresponding ser-
vices; If a open question is detected, the master node will
search the answers. Moreover, the master node also handle
detected_fall by triggering an active query. The PC
holds all the services and handles the articulation of Pepper.
The following sections explain how Pepper speaks, the Q&A,
and all the services.

1) Speech Generation: To make Pepper speak, all the audio
responses are published to thepepper_talker topic, in-
cluding active queries, answers to the questions, and feedback
on the services. Then we utilise the pepper_listener
node and the ALTextToSpeech API from PC to allow Pepper
articulate.

The listener node subscribes to the pepper_talker
topic and send any word string received to the ALText-
ToSpeech module, which allows the robot to speak. The
ALTextToSpeech sends commands to a text-to-speech engine,

5



Fig. 9. Design architecture of the interactive state

and authorizes also voice customization. The result of the
synthesis is sent to the robot’s loudspeakers.

2) Questions and Answers: If the words string received by
the microphone is a question, the master node will trigger
the Q&A module. We treat the queries as open questions
and search answers using google search through People Also
Ask (PAA) APIs. Even if the search result does not have a
direct answer for the question, the APIs can also return a list
of questions which are either most related or most popular.
The Q&A system can answer questions of any type with
high variance, including What, When, How, Where, etc. A
answering example for health related question is shown in
figure 10

Fig. 10. Questions and Answers

E. Services

Functions are achieved by calling a series of services. This
section revisits all the tasks and explains what services are
used.

1) Follow Me: This function calls the tracking service.
In this service, to make Pepper follows people, we utilise the
ALTracker module. It allows the robot to track different targets
(red ball, face, landmark, etc.) using different means (head
only, whole body, move, etc.). The main goal of this module

is to establish a bridge between target detection and motion in
order to make the robot keep in view the target in the middle
of the camera.

2) Come Here: The first service involved in this function
is rotate_robot, which takes the sound source angle
returned by the microphone and make Pepper turn to that
direction using the ALNavigation API. ALNavigation API
allows the user to perform safe displacements when using the
robot.

The second service is tracking, which detects the hu-
man and approaches the target. Come Here lets Pepper stop
automatically in front of the user at a safe distance.

3) Find Object: The first service involved in this function
is find_object_location. Essentially this service takes
any class label as a request and returns two pieces of infor-
mation: The isInFrame variable tracks whether the required
object is in the current frame. A position variable maintains
the location of Pepper (w.r.t the world frame) when that object
is detected last time. If the object has not been detected before,
the position is set to a default value (0).

After the master NLP node extracts the object to be
found from the query, it will send a request to the
find_object_location service with the object class
name, checking whether the object has been detected. If not,
Pepper will inform the user and end the query. If the object has
been detected, Pepper will navigate to the recorded position
using the go_to_location service.

Next, Pepper will call the find_object_location
service again to check whether the object is in the current
frame. If not, the search_around service will be called
subsequently. It turns Pepper 360 degrees to search for the
target, using the rotate_robot service, until the object is
in the frame.

Finally, Pepper will inform the user and terminate the query
after the required object appears in the current frame.

VII. EXPERIMENT AND RESULT

A. Experimental Setup

Four experiments were carried out in Imperial College
London’s room EEE505 to test all of the mentioned hy-
potheses. All survey participants were chosen from Imperial’s
EEE department. This is because, during a pandemic, finding
elderly people living in single-occupancy rooms in their care
homes to test our robot is difficult.

Before starting the experiments, CareBot has navigated in
the given environment for the initialisation of some functional-
ities, i.e., memorising the location of the objects. Participants
were provided advance instructions on how to operate the
robot’s various functionalities in all studies. Following that, the
participants could interact with CareBot based on the different
experimental criteria. Some quantitative terms (i.e., success
rate) were used to evaluate CareBot’s performance.

B. Hypothesis Validation

1) H1 Experiments: For H1, the participant has interacted
with CareBot to chat for a while. At the beginning, the user

6



will ask the CareBot to ’Come Here’ and the CareBot will
come and stop in front of the user at the distance of around 0.5
meters. Then the user could begin chatting with the CareBot.
The chat includes but not limited to asking for the weather,
and the date today. The CareBot would search online and reply
the user.

Results During 10 trials on the first experiment, The Care-
Bot could come to the user in 8 times. It has successfully
recognised and replied for 85% questions. The failures may
because of the noisy environment.

2) H2 Experiments: To evaluate H2, participants ask the
robot to locate 5 items: bottle, umbrella, remote, mouse, and
phone. Each item is placed in a distinct area in the room
that CareBot is able to see. As the function of find object
is continuously running in the background mode, the CareBot
would ’remember’ the location of the object, when it appears
in pepper’s sight. Thus, the experiment began with placing
an object in the area that CareBot could detect. In this stage,
the participant would ask the CareBot to follow him/her and
change its location in the room. Participants will next ask the
CareBot to search for the objects. After the CareBot navigate
to the position of the object, it will turn around and find the
object so that the user is able to find it.

Results During our experiments, many fatal happened be-
cause there were obstacles around the CareBot and stopped
it to turn or move. Despite that, over 50 trials during our
experiment, it successfully directed to the location and found
23 objects.

3) H3 Experiments: In the last experiment, participants
will simulate falling events in the sight of CareBot 50 times
at different distances. The number of successfully detected
falling events will be used to evaluate if the hypothesis H3 is
held. The visualization of fall detection is shown in figure 11.

Fig. 11. Visulaization of Fall vs Normal

Results For the real environment test, falls can be detected
successfully 49 out of 50 trials, achieving 98% test accuracy.
Furthermore, the fall detection system can operate in real-
time with an average inference time of 0.095s, confirming our
premise of lowering the risk of older people following a fall,
as the robot can care the elderly people in time. To further
improve the user experience, an extended function to assist
the elderly as they fall can be incorporated into our system in
the future. For example, the robot could send a message to or
call his/her children straightaway to provide the elderly with
timely medical assistance.

VIII. CHALLENGES

This part mainly discusses the challenges we have faced and
cannot be resolved during the experiments in the real scene.
We tried to utilize the ROS 2D navigation stack as the moving
module in our project. However, many failures occur, and the
following paragraphs show the detail.

A. Navigation & SLAM

Having accurate navigation is helpful for CareBot to serve
its client, and many functions such as object funding highly
rely on it. To balance the computational power required for the
computer and efficiency, ROS 2D mapping is selected. ROS
gmapping and move_base nodes are wildly used within
the SLAM implementation, but several problems happen when
using them with Pepper’s Odom and laser scan system. A
further problem will be broken down into the following
session: Mapping, AMCL, Navigation and another approach.

1) Mapping: Data from the Odom (robot relative position)
and the laser scanner are combined to create a 2D map from
scratch with Pepper. However, IMUs, encoders and motors
from Pepper has drifting problem, so that Pepper cannot locate
itself as shown in figure 12. To solve this issue, a clean map
is reproduced with image editing software.

Fig. 12. Shift Issue (left), Clean Map (right)

2) AMCL: A clear map is essential for the robot to localise
itself. With a confusing map (left of figure 13), the localisation
program cannot generate reasonable localization results. This
is shown by the spread of the red arrow across the map. After
using the manually created map, the localization program can
localize the robot correctly with confidence as shown with the
spread of the red arrow.

Fig. 13. Localization with Confusing Map (left), Localization with Clear Map
(right)

7



3) Navigation / Navigation with r-TAB: When the robot
navigates across the map, other than receiving the target,
accuracy feedback from Odom and the laser scanner is es-
sential to let the navigation program calculate the navigation
path. By navigating using ROS move_base with a 2D map
after localizing itself, the Pepper can navigation avoid obstacle
during the navigation. However, with the drifting issue, Pepper
sometimes would confuse its location and non-exist obstructed
object (left of Figure 14), which will affect the performance
of the navigation process. On the other hand, navigation with
r-TAB can solve this issue introduced by Odom by combining
a visual & depth camera and a laser scanner to replace
localization with Odom. However, since r-TAB involves visual
& depth image processing, it requires more computational
capability to achieve the navigation process, or the 3D map
cannot be created successfully as shown in the right of Figure
14.

Fig. 14. Navigation in 2D (left), 3D Map Create with R-TAB (right)

4) Patrol: Patrol is a service originally designed for search-
ing the locations of target object if it does not exist in the
current database when CareBot is required to find it. However,
Patrol was not able to implement due to the fact that Pepper
robot cannot navigate in the map.

A theoretical simulation was implemented using AMCL and
move_base nodes in both STDR simulator and Rviz (a short
video can be referred to GitHub link). The virtual robot in
simulator can accurately navigate to pre-defined coordinates
within the pre-built Rviz map using path planning, as shown in
figure 15. The coordinates of target points can be acquired by
manually setting the 2D navigation goal in the Rviz map. The
move_base node provides path planner which constantly
updates the path to avoid obstacles, ensuring virtual robot
safely navigate to the target goal without collision.

Fig. 15. Patrol Simmulation Running in Rviz

An alternative approach for patrol based on ALMotion
APIs was implemented, with which the movement to fixed

point can be achieved by defining the relative coordinates and
rotating angle for the input arguments. However, the existing
APIs is not an ideal solution for patrol as it would navigate
to the defined target point regardless of obstacles in reality
which would potentially lead to collision. Therefore, with this
limitation, the patrol service can only be run on the empty
space. Further improvement for patrol would be investigated
in future study.

IX. CONCLUSION AND FUTURE WORK

In this report, CareBot is proposed as an intelligent assistant
and home companion, providing a series of auxiliary functions
and human-robot interaction (HRI) for the elderly, particularly
in home-care scenarios. We successfully implement functions
including calling the CareBot to come closer and follow the
user, asking the CareBot to find a predefined object in the
environment, and monitoring the user’s pose for fall detection.
Two states and five functions are explained in detail and
evaluated in the previous sections. We also illustrate the main
challenge - navigation and shed some light on how we address
the issue and the remaining problems. In sum, we achieve the
goal set in the design report with great effort, and most of the
hypotheses are verified.

We still see a great potential to extend the project. Here we
list some future works that might be done:

• Q&A has been implemented for everyday conversation.
However, a reminder function can be implemented on
top: the CareBot would remind the user to drink water or
take medicines at the appointed time.

• The object detection can be improved by retaining a new
Tiny YOLO v4 model on a larger dataset that includes
objects the elderly are more likely to encounter in daily
life.

• The database can be extended to store more information.
• Other actions recognition like sedentary and lying analy-

sis can be integrated for human-robot interactions rather
than only fall detection.

• Pepper is capable of moving arms; more humanoid ac-
tions can be added, such as pointing to the found object.

All the code and a demo video can be found in the Github
repository :

Fig. 16. Github link: https://github.com/Yebulabula/HCR

8



REFERENCES

[1] Age UK, “Three-quarters of over 65s admit they’re worried
about rising cost of living,” 2022, [Online]. Available:
https://www.ageuk.org.uk/latest-press/articles/2022/three-quarters-
of-over-65s-admit-theyre-worried-about-rising-cost-of-living/.

[2] D. Feil-Seifer and M. J. Matarić, “Socially assistive robotics,” IEEE
Robotics Automation Magazine, vol. 18, no. 1, pp. 24–31, 2011.

[3] J. Broekens, M. Heerink, and H. Rosendal, “Assistive social robots in
elderly care: A review,” Gerontechnology, vol. 8, pp. 94–103, 04 2009.

[4] J. Jones, “Robots at the tipping point: the road to irobot roomba,” IEEE
Robotics Automation Magazine, vol. 13, no. 1, pp. 76–78, 2006.

[5] M. Pollack, L. Brown, D. Colbry, C. Orosz, B. Peintner, S. Ra-
makrishnan, S. Engberg, J. Matthews, J. Dunbar-Jacob, C. Mccarthy,
M. Montemerlo, J. Pineau, and N. Roy, “Pearl: A mobile robotic
assistant for the elderly,” 06 2002.

[6] K. Wada, T. Shibata, T. Saito, and K. Tanie, “Effects of robot-assisted
activity for elderly people and nurses at a day service center,” Proceed-
ings of the IEEE, vol. 92, no. 11, pp. 1780–1788, 2004.

[7] H. Hodson, “The first family robot,” 2014.
[8] T. Klamer and S. B. Allouch, “Acceptance and use of a social robot by

elderly users in a domestic environment,” in 2010 4th International Con-
ference on Pervasive Computing Technologies for Healthcare. IEEE,
2010, pp. 1–8.

[9] G. Milliez, “Buddy: A companion robot for the whole family,” in
Companion of the 2018 ACM/IEEE international conference on human-
robot interaction, 2018, pp. 40–40.

[10] M. Fujita, “On activating human communications with pet-type robot
aibo,” Proceedings of the IEEE, vol. 92, no. 11, pp. 1804–1813, 2004.

[11] C. Bartneck, T. Belpaeme, F. Eyssel, T. Kanda, M. Keijsers, and
S. Šabanović, Human-robot interaction: An introduction. Cambridge
University Press, 2020.

[12] J. Broekens, M. Heerink, H. Rosendal et al., “Assistive social robots
in elderly care: a review,” Gerontechnology, vol. 8, no. 2, pp. 94–103,
2009.

[13] B. Graf, M. Hans, and R. D. Schraft, “Care-o-bot ii—development of
a next generation robotic home assistant,” Autonomous robots, vol. 16,
no. 2, pp. 193–205, 2004.

[14] A. K. Pandey and R. Gelin, “A mass-produced sociable humanoid robot:
Pepper: The first machine of its kind,” IEEE Robotics & Automation
Magazine, vol. 25, no. 3, pp. 40–48, 2018.

[15] Luxonis, “Oak-d documentation,” 2021. [Online]. Available: https://
docs.luxonis.com/projects/hardware/en/latest/pages/BW1098OAK.html

[16] Intel, “Openvino documentation,” 2021. [Online]. Available: https:
//docs.openvino.ai/latest/index.html

[17] I. Khokhlov, E. Davydenko, I. Osokin, I. Ryakin, A. Babaev, V. Litvi-
nenko, and R. Gorbachev, “Tiny-YOLO object detection supplemented
with geometrical data,” arXiv e-prints, p. arXiv:2008.02170, Aug. 2020.

[18] J. Han, E. Haihong, G. Le, and J. Du, “Survey on nosql database,”
in 2011 6th international conference on pervasive computing and
applications. IEEE, 2011, pp. 363–366.

[19] R. Bajpai and D. Joshi, “Movenet: A deep neural network for joint
profile prediction across variable walking speeds and slopes,” IEEE
Transactions on Instrumentation and Measurement, vol. 70, pp. 1–11,
2021.

9

https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098OAK.html
https://docs.luxonis.com/projects/hardware/en/latest/pages/BW1098OAK.html
https://docs.openvino.ai/latest/index.html
https://docs.openvino.ai/latest/index.html

