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Abstract

Falls are the leading cause of death in the current ageing society. An automatic indoor

fall detection method could accelerate the intervention after a fall, potentially leading to

better treatment outcome. Existing technologies suffered from various constraints (e.g.,

high cost and low robustness toward environmental changes), for which these have not

been widely deployed. This study comparatively evaluated 5 machine learning methods,

namely SVM, RF, sCNN, ResNet18, KD-sCNN, based on data collected from a multistatic

IR-UWB radar system sampling at a low rate of 10 Hz. The results revealed that SVM

based on PCA extracted features and KD-sCNN that was boosted by the benchmark model

ResNet18 via knowledge distillation were the most promising classifiers for the proposed

system. Under standard strategy, SVM scored 98.9% and 100% test accuracy in multi-

class and binary classification, while KD-sCNN achieved 98.3% in binary classification and

99.4% in multi-class scenario. Both classifiers were proved to be robust against domain

shift between subjects and signal translation/rotation caused by radar displacement, due

to which up to 4.2% accuracy reduction was observed for SVM and KD-sCNN. SVM and

KD-sCNN occupied 1.25 and 0.141 MB of memory respectively, and time taken for one

inference was only few milliseconds for both. Such low computational complexity and

high prediction accuracy served as a great proof of the feasibility of the overall system

proposed.
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Chapter 1

Introduction

1.1 Background

T
HE demand for better health care for elderly people increases with the ageing of

population. Falling is a common cause of injury among the elderly. In the United

States, around 36 millions falls were reported by individuals aged 65 years or older in

the 2018, resulting in more than 30 thousands deaths [3]. The rate of death caused

by falling increased by 31% from 2007 to 2016 [4]. According to [5], early intervention

after a fall could improve the outcome of treatment. Therefore, a real-time automatic

fall detection system could be a potential solution for improving health care provision,

especially for the elderly living alone. A variety of technologies have been developed for

fall detection, which can be categorised according to the type of sensor used, such as

cameras, wearable sensors, and radars [6–9]. Vision-based technologies generally rely on

human body parts tracking, whereas wearable sensors, such as accelerometer, could detect

abrupt body parts acceleration caused by falls. The emergence of depth camera, such as

Kinect, addressed the problems of traditional vision-based systems using 2D cameras, such

as vulnerability to lighting conditions and privacy concerns [10]. However, the problem of

obstacle occlusion persists, and the relatively high installation cost hindered such systems

in deploying in a domestic environment. Wearable sensor-based methods require strict

user compliance (e.g., actively wearing or charging the device), which is not friendly to
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elderly users, especially those suffering from dementia. Recently, radar-based systems

are considered emerging alternatives due to their ability of measuring body movement

reliably and unobtrusively [10]. In this study, a multistatic networked radar system named

Tiresias [11], comprising of several Novelda X4M05 radar modules (up to 4 modules), will

be used to detect falling events in a domestic environment. X4M05 radar is an impulse

radio ultra-wideband (IR-UWB) radar operating at sub 10 GHz, allowing high range

resolution, penetration through obstacles (e.g., walls), and target detection up to 9.9

meters away [12, 13]. In this study, the radars will be placed at fixed locations to allow

maximum coverage.

The rest of this report will be organised as follows. Chapter 2 will introduce the working

principles of IR-UWB radars and related works using similar technologies. Chapter 3 will

describe the experimental setup for data acquisition and data pre-processing techniques.

Chapter 4 will detail the feature extraction techniques and the proposed machine learning

methods. A comprehensive result analysis will be given in Chapter 5. Lastly, Chapter 6

will summarise key findings and conclude with future work recommendations.

1.2 Objectives

This study will explore the feasibility of automatic fall detection using the multistatic

radar system Tiresias with a sampling frequency of 10 Hz. Towards the end of study, a

method capable of effectively distinguishing falling events from false alarms (e.g., sitting

or walking) will be proposed. To achieve the final goal, the following objectives must be

met:

• Recruit at least 10 experiment subjects, from whom a dataset comprising of two

classes, Fall and Non-Fall, will be generated. The Fall class will contain three sub-

classes, representing different types of falling; to maintain the balance of the dataset,

the Non-Fall class will also comprise three sub-classes, corresponding to other activi-

ties that might cause false alarms. The balance between subject will also be kept, in

orther words, each participant will contribute similar amount (mean no. of samples
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per subject ±10%) of samples to the dataset.

• Filter out any outliers from the dataset and apply pre-processing techniques to mit-

igate noises.

• Extract features from the dataset using unsupervised methods, and use classic clas-

sifiers, e.g., SVM and Random Forest, to perform fall detection. Methods with an

accuracy of above 90% on the test set would be considered successful.

• A number of deep learning methods, e.g., CNN-based neural networks, will be im-

plemented in comparison to the classic methods. Same successful criteria apply for

deep learning methods.

The generalisation ability of models will be evaluated via the leave-one-subject-out

strategy. The effect of radar positional shift will also be explored to test the robustness of

proposed methods.
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Chapter 2

Literature Review

2.1 Existing Technologies for Fall Detection

N
UMEROUS technologies have developed for the detection of falling events. Accord-

ing to the types of sensor used, this chapter will introduce the working principles

of various technologies, and review relevant studies, while give a stronger focus on the

radar-based solutions.

2.1.1 Wearable Sensing-Based Technologies

In the past decades, wearable devices have been extensively used in the field of hu-

man activity recognition [14]. Inertial sensors, such as accelerometer and gyroscope, were

mounted on human body to capture the signal generated by the movement. Since the

falling of human body causes abrupt changes in signals, threshold-based detection meth-

ods have been proven to provide satisfactory classification accuracy. In [15], two tri-axial

accelerometers were fitted on the trunk and thigh of participants, and by setting an upper

and a lower threshold for the signals generated from each sensor, the proposed algorithm

achieved 100% classification accuracy. Later, Li et al. [16] proposed a system comprising

accelerometers and gyroscopes. In addition to the accelerometer-based posture recogni-

tion, gyroscopes were used to determine whether the transition between recognised pos-

tures was intentional (e.g., fall would be unintentional transition to a lying position). The
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algorithm was similarly based on threshold calculated from recorded data, and the binary

classification accuracy was 92%.

Despite the high classification accuracy, wearable device-based solutions are inconve-

nient for prolonged use. An inherent constraint of wearable systems is that the users are

required to wear them throughout the day. Any system based on wired connection would

be strongly disadvantaged due to the added obtrusiveness. For compact wearable systems,

limited battery power would bring inconvenience to users, especially to the elderly. Also,

inertial sensors require regular calibration to mitigate the error accumulated during the

usage [17], which further increased inconvenience.

2.1.2 Vision-Based Technologies

Computer vision techniques have been widely studies and applied in a variety of do-

mains due to the rapid development of hardware and software in recent years [18]. As

a result, computer vision-based solutions formed another major category in the area of

fall detection. Vision-based methods could be broadly divided into two sub-categories, 2D

and 3D, depending on the type of features used. In 2D vision-bases systems, a single RGB

camera was generally used to record video data, from which, features as bounding box,

silhouette and the center of gravity (COG) of human body were extracted by applying

computer vision techniques (e.g., image segmentation, edge detection, etc.) [19–21]. In

3D systems, multiple RGB cameras or a single depth camera were used to collect depth

information, from which, features as 3D bounding box, 3D silhouette and body joint

position could be extracted. In earlier studies, threshold-based classification algorithms

were generally applied to the extracted features. In [22], the height/weight (HW) ratio

of 2D bounding box was computed and compared with a subject-specific threshold value.

The classification accuracy was 68% when only HW ratio was considered in computing

the threshold value, while the accuracy increased to around 80% when extra information

were taken into account (e.g., health record). By thresholding the distance between 3D

body centroid and the floor plane, Diraco et al. [23] achieved approximately 80% accuracy.

Compared to wearable systems, vision-based approaches were less obtrusive, as camera
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could be conveniently installed at any location. However, vision-based systems were vul-

nerable to occlusions, which are likely to happen in a domestic environment. Zhang et

al. [24] evaluated four fall detection methods based on a single depth camera, and revealed

that three out of four evaluated methods were invalid on occluded falls as the accuracy

fell below 50%. Also, vision-based solutions generally have high hardware requirement,

especially for a real-time detection, which increases the deployment cost of such systems.

Another fundamental issue was that camera surveillance might raise privacy concerns.

2.1.3 Radio-Frequency Radar-Based Technologies

Fall detection approaches based on radar technologies could overcome the problems

encountered by aforementioned systems. In the existing literature, radio-frequency (RF)

radars were generally used for remote monitoring.

RF Radar Fundamentals

RF radars could be used to determine the distance to a target, and they work by emitting

radio waves with a frequency of a few GHz, which will reflect back when hit on an obstacle.

RF radars could be broadly categorised into continuous wave (CW) and pulse wave radar.

The simplest form of CW radar uses unmodulated CW wave of fixed frequency to measure

the velocity of a moving target. Due to the Doppler effect, the movement of a target causes

changes in the frequency of reflected signal, which is known as Doppler shift fd, and the

velocity of the target v could be calculated by Equation 2.1, where f is the frequency of

transmitted radio wave [25, p. 274].

v =
cfd
2f

(2.1)

Frequency-modulated CW (FMCW) and stepped-frequency CW (SFCW) radars were the

popular CW-based radar as they could provide range information of a target. These

two radar are similar as they emit radio waves of frequency varying over time. FMCW

linearly varies frequency of emitted waves within a period of time, while SFCW varies the

frequency by discrete steps (Figure 2.1). By computing the frequency difference between

the received wave and the wave about to emit at a particular time, the time-of-flight of
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Figure 2.1: Frequency change over time of (a) frequency-modulated continuous wave, and
(b) stepped-frequency continuous wave

the wave could be obtained. The range R to a target would be the time-of-flight ∆T

multiplied by the speed of light c divided by 2 (Equation 2.2) [25, p. 4].

R =
c∆T

2
(2.2)

Pulse wave-based radars emit distinct pulses of RF waves, as shown in Figure 2.2,towards

the target, and use the time-of-flight of reflected pulse waves to provide range information.

Impulse radio ultra-wide band (IR-UWB) radar is a common type of pulse radar, which

allows high spatial resolution due to its large bandwidth (> 500 MHz) [26]. The smallest

range increment is referred to as range bin, which could be calculated using Equation 2.3,

where freceiver corresponds to the sampling frequency of the radar receiver. The mea-

surements of range happen in a small-scale time dimension, also known as fast-time. A

collection of fast-time measurements across a time dimension of larger scale, also known

as slow-time, is referred to as radar range profile, which is a common representation of

raw radar data.

∆R =
c

2freceiver
(2.3)

Compared with the CW counterparts, IR-UWB exhibited higher obstacle penetration

ability and robustness to clutter in vital sign measurements [27].
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Figure 2.2: Illustration of RF carrier signal pulses

RF Radars for Fall Detection

Various RF radars have been used for fall detection. Wu et al. [9] implemented a fall

detection system based on a single CW radar with a sampling frequency of 1 kHz. The

proposed method was purely based on the features extracted from the 4-second spectro-

grams generated using STFT. The spectrograms were processed using standard image

processing techniques, since they could be considered as grey-scale images. The proposed

classification algorithm based on revelance vector machine (RVM), which is a probabilistic

version of support vector machine (SVM), resulted in a binary classification accuracy of

98.75. However, the sample size was only 80, and the classes were imbalanced, where

only 20% of samples were Fall samples. Jokanovic et al. proposed a Principal Component

Anaylisis (PCA)-based approach using a monostatic CW radar sampling at 1 kHz. STFT

was performed and the resulting spectrograms were projected to a lower dimension space

formed by the largest principal components. The minimum Euclidean distance in the

low-dimensional space between the training samples and test samples was used for classi-

fication. This PCA-based approach achieved 90% binary classification accuracy on a test

set consisting of 30 samples. Using narrowband pulse wave radar, Wu et al. proposed a

system based on Hiden Markov Model (HMM), which achieved 96.7% binary classification

on both features extracted using STFT and matching pursuit decomposition (MPD). More

recently, deep learning methods have been applied for radar-based fall detection system.

Yoshino et al. [28] proposed a CNN-based approach that automatically extract hidden
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features from the spectrogram, which scored 93.4% in binary classification, and 91.3% in

the classification of 4 sub-classes (2 fall and 2 non-fall classes). Maitre et al. proposed

a system based on the CNN-LSTM architecture, where the CNN part serves as feature

extractor and the short-term memory (LSTM), a type of recurrent neural network with

addition of memory cells to mitigate gradient vanishing problem induced by long-term

dependencies in signals [29], acts as classifier. Three UWB radars were fixed at distant

locations in a domestic environment, and the collected 2-dimensional raw data was pro-

cessed into 1-dimensional vector normalised between 0 and 1. The system was evaluated

using the so-called leave-one-subject-out, where data from all subjects except one was

used for training and test the classifier on the left out samples; this process is repeated

until all subjects has been left out exactly once, the the test accuracy across subjects is

averaged. This system scored 88.1%, 91.5% and 82.6% binary classification accuracy on

falls performed in the 3 positions. Excluding the radars distant away from the position of

falls, the accuracy increased to 98.5%, 96.8% and 95.5%.
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Chapter 3

Data Acquisition

3.1 Experimental Setup

I
N order to validate whether networked IR-UWB radars could be used to detect falls,

an experiment has been conducted to generate a dataset.

3.1.1 Hardware

Two Novelda X4M03 radars networked via wireless connection have been used for this

project. The X4M03 radar is ideal for the purpose of indoor real-time fall detection due

to its compact size and low power consumption. The default carrier frequency fcarrier of

radar was set to 7.29 GHz to comply with ETSI regulations [12].

Figure 3.1: A radar node in an adjustable mount. (left) A X4M05 radar mounted at the
front. (right) A Raspberry Pi Zero W mounted at the rear.
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Each radar was stacked with several PCB boards and a Raspberry Pi Zero W,

and mounted in a 3D printed adjustable stand (Figure 3.1). A radar node software was

deployed on the Raspberry Pi, and it was responsible for receiving radar data and net-

working via the local Wi-Fi provided by a LAN router, through which the radar data were

transmitted to a host device running a supervisor software. Radar data were stored in the

form of frame, which is a vector containing amplitude values at each range bin. According

to [12], the freceiver of X4M05 is 23.328 GHz, which yields a range resolution of 6.43 mm

(Equation 2.3). Figure 3.2 illustrated one frame of radar data recorded in an empty room,

which consisted of 934 range bins, implying a maximum detectable range of around 6 m.

Note that large amplitudes were shown in the first 100 bins due to the cross-talk between

transmitter and receiver, in other words, receiver directly captured the emitted signals,

rather than capturing their reflections.

Figure 3.2: A single frame recorded using X4M05 radar in an empty room. Each range bin
is equivalent to around 6.43 mm.

Due to the Wi-Fi bandwidth constraint, the sampling frequency across slow-time

fs was set to 10 Hz. A laptop (MacBook Pro 2021) was used to run a supervisor software

and a self-developed GUI for data collection. The supervisor software was responsible for

radar configuration, data transmission, as well as data alignment, because the incoming

frames of data were not chronologically ordered [11]. The built-in camera of the laptop was

used to record video data, which was used to validate the data at the end of experiment.
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3.1.2 Laboratory Environment

The experiment was conducted in an indoor environment, since the fall detection meth-

ods mainly target elderly people in domestic environments. Figure 3.3 shows the internal

environment of the laboratory. Irrelevant objects were removed to prevent subjects from

injuries and mitigate clutter causes by non-stationary objects. While every effort was

made, there might still be sources of noise present in the room (e.g., PC cooling fan),

however, the impacts were negligible. An air mattress was placed in the room to mitigate

risk of injury when falling events were simulated.

Figure 3.3: (left) Fixed positions of radar nodes in the room. (right) Scaled layout of the
room, where the orange circles, blue rounded rectangle, and dark grey rectangles represent
radar nodes, air mattress and obstacles, respectively; subjects performed activities only in
the light blue area, and the grey area was disregarded in the experiment.

3.1.3 Experimental Design

Two radars were placed at two fixed locations at 2.1 meters above the ground with a

distance of 2.5 meters between the radars. In such a configuration, radars were capable

of detecting movements perpendicular to the floor plane. Since the experiment require

subjects to simulate falling events, 10 healthy subjects aged between 22-26 have been

recruited. Subjects were asked to perform 3 actions for each of the 2 classes, Fall and

Non-Fall, where each action was repeated for 30 times. Actions were designed based on

the reviewed literature. Three types of fall were simulated, namely Stand Fall, Sit Fall

and Walk Fall. For each type of fall, subjects were required to fall forward, toward left
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and toward right (10 falls for each):

• Stand Fall. Subjects stand for approximately 1s and then fall down.

• Sit Fall. Subjects stand up from sitting and then fall down; this was to simulate

the dizziness and imbalance caused by postural hypotension, a leading cause of falls

among elderly people [30].

• Walk Fall. Subject walk at normal speed toward the air mattress and then fall

down; this was to simulate falls caused by tripping, which was reported to cause

most falls among the elderly people in [31].

After the fall, subject remained still laying on the mattress until a notice was given. For

the Non-Fall class, 3 daily activities representing 3 sub-classes were performed, and are

referred to as Stand Non-Fall, Sit Non-Fall and Walk Non-fall :

• Stand Non-Fall. Subjects stand for approximately 1s and then simulate picking

an object from the ground.

• Sit Non-Fall. Subjects stand for approximately 1s and then sit on a chair; the

aim is to confound the classifier as the sitting is a rapid postural change similar to

falling.

• Walk Non-Fall. Subjects simply walk from one point to another at a normal

walking speed.

Note that subjects conducted experiment on different dates, however, within similar time

slots (all between 2PM to 6PM) to avoid potential confounding factors. At the end of

experiment of each subject, the radar data were visualised and validated against video

data to assign labels to data samples and eliminate data samples that did not comply

with the aforementioned requirement for each sub-class. After this process, the video data

were immediately eliminated to protect the privacy of subjects.
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3.2 Data Processing

3.2.1 Dataset Overview

Table 3.1: Number of samples of each classes and each sub-class in the dataset

Class Sub-class No. of samples

Fall 898
Stand 299
Sit 300
Walk 299

Non-Fall 897
Stand 298
Sit 300
Walk 299

A total of 1795 samples were collected, and the number of samples of each class

and each sub-class is summarised in Table 3.1. The number of samples is similar between

class and classes, which prevent the problems caused by class imbalance [32]. Note that

each subject contributed similarly, providing extra insurance to the balance of dataset.

Each sample consists of 40 frames (as illustrated in Figure 3.2), and with a fs of 10 Hz,

this is equivalent to a window size of 4 seconds, which is the average time for a falling

event to complete according to [33]. Thus, the data samples from each radar were stored

as MxN matrices, where M = 40 and N = 934 (Figure 3.4). The overall shape of the

dataset would be (1795,2,40,934) where second dimension corresponds to the number of

channels (radars).

3.2.2 Signal Processing

The raw data were hardly interpretable as the useful information was concealed by the

background noise. As shown in a raw data sample collected from Subject 9 performing a

walk toward radar 1, the moving target was not distinguishable from the noises and clutters

(Figure 3.6(a)). Therefore, some processing was required in order to increase the signal-to-

noise ratio (SNR). The main sources of noise were the pulse echoes from stationary objects

and the antenna cross-talk. Since these noises were almost constant in each frame of signal,

several conventional signal processing techniques capable of separating moving target from
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stationary background were applied and evaluated. By convention, the amplitudes were

converted to power. Afterwards, a frame-wise standardisation was applied according to

Equation 3.1, where the frame mean x̄ was subtracted by each bin value xi, which then

was divided the frame standard deviation σx.

yi =
xi − x̄

σx
(3.1)

Figure 3.4: Data structure of collected samples, where M and N represent the number of
frames and bins, respectively.

Background Subtraction

Background subtraction (BS) techniques were commonly employed to separate the fore-

ground from the noisy background due to their simplicity [34]. A 200-frame sequence of

data Xempty was recorded in an empty room, and averaged across the slot-time axis to

give a reference frame xempty. By subtracting the xempty, the DC component in the signal

should be eliminated or attenuated. However, as shown in Figure 3.5(b) where a single

frame collected from a subject performing a walk, BS failed to remove the large peaks near

range bin 800 (around 5 m from the radar), which was obviously caused by clutters. This

resulted in a partial separation of the moving target from the background as depicted by

the range profile from a walking subject (Figure 3.6(b)), where a blurred boundary was
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formed along the trajectory of the moving target (dashed black line). Ideally, only the

movement of a target should result in large power peaks in the range profile. However,

with BS, the peaks coincided with the location of target only at at around time t = 0, after

which, the target was concealed by large and consistent peaks in the region between 3 and

4.5 meters. The consistent large peaks could be induced by the difference in the environ-

ment when the empty-room and walking data were collected (e.g., addition or removal of

an obstacle), which caused variation in amplitudes.

Figure 3.5: (a) A raw data frame collected using radar 1 from Subject 9 performing a
walk; (b) signal after background subtraction; (c) signal after SVD-based clutter removal;
(d) signal after high-pass filtering.

Singular Value Decomposition

Singular Value Decomposition (SVD) could factorise the data matrix X (MxN) in the

following form:

X = UΣVT (3.2)

where U (M ×M) and V (N ×N) are real unitary matrices since the data matrix X is

real. The diagonal matrix Σ (M ×N) contains r non-zero singular values, where r equals
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Figure 3.6: A raw data sample collected using radar 1 from Subject 9 performing a walk:
(a) raw data;(b) after background subtraction; (c) after SVD-based clutter removal; (d) after
high-pass filtering.

to the rank of X. According to [35], the noise and clutter mainly resided in the subspace

of the largest singular value. Thus, eliminating the largest singular value subspace during

the reconstruction of X should remove the noise and clutters. As seen in Figure 3.5(c),

SVD-based method the amplitudes of clutters were attenuated, approaching the amplitude

of actual signal. In Figure 3.6(c), SVD-based method created a clear boundary coinciding

with the walking trajectory. However, it was not possible to accurately localise the target,

since the amplitude generated by the actual movement was close to the amplitude of

clutters.

High-Pass Filtering

Following the same idea of suppressing low frequency components in the signal, a 4th-

order Butterworth high-pass filter was applied. Since our sampling rate was only 10 Hz, a
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cut-off frequency of 4 Hz was used. With high-pass filtering, the clutters were effectively

suppressed, significantly improving the SNR (Figure 3.5). Compared to other methods,

the appearance of ghost target was greatly suppressed, and several peaks representing the

true target were clearly visible along the trajectory (Figure 3.6(d)).

3.2.3 Frequency Domain Analysis

The aforementioned techniques were applied directly to the raw data samples, which were

in the time domain. In the existing literature, the Short-Time Fourier Transform (STFT)

was generally adopted, since the resulting time-frequency representation of radar signal

yields more useful information than the time-distance representation. However, performing

STFT on the walking data resulted in a spectrogram with very limited information because

of the low sampling frequency. Also, to avoid aliasing, a system with a fs of 10 Hz could

only detect a Doppler shift fd < fs
2 , according to Nyquist–Shannon sampling theorem.

The constraint on the fd yielded a maximum detectable speed, which is calculated to be

0.1 ms−1 (Equation 2.1). Obviously, such a low fs was insufficient to measure the falling

speed. As such, this study will solely focus on the time-distance representation of data.
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Chapter 4

Methods

4.1 Conventional Machine Learning Classifier

F
OR this study, two conventional classifiers, namely Support Vector Machine (SVM)

and Random Forest (RF) were evaluated. Generally, task-specific features with high

descriptive power are extracted from raw data before feeding into the classifiers. However,

the manually selecting and extracting features require human intervention, which could

unintentionally introduce artefacts. Thus, this study will directly use the raw data as

input to the classifiers. Since the data used in this study were in the format of 2-channel

2D matrices, they could be considered as 2-channel images. Both SVM and RF have

been successfully applied to high-dimensional tasks, including image classification [36]. In

image classification tasks, SVM and RF consider each pixel as a feature, and an image

of size (C,M ,N), where C is the number of channels, will result in a feature vector of

length C ×M ×N . Although SVM and RF have been proved to perform well with high-

dimensional data (e.g., p >> n, where p is the number of features and n is the number

of samples) [37, 38], applying dimensionality reduction technique beforesuch as Principal

Component Analysis (PCA), feeding feature vector into the classifiers could improve the

their computational efficiency, as well as reducing the risk of over-fitting.
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4.1.1 Principal Component Analysis

PCA is a classic unsupervised method for down-sampling and feature extraction. PCA

could effectively reduce the dimension of data by computing all the orthogonal bases,

known as principal components, and constructing an approximation of the original data

using only the principal components with top k-th largest variances. Therefore, applying

PCA will reduce the dimension of data while retaining useful information. Two-directional

two-dimensional (2D-2D) PCA, a PCA variant proposed by [39], was used in this study due

to its effectiveness in dealing with 2-dimensional data. Considering a dataset consisting

of N range profiles Rm×n, the 2D-2D works by finding the optimal projection matrices

Xm×d and Zq×n along the rows and columns, respectively, where d and q are the optimal

number of principal components. By projecting the original data R on X and Z, a feature

matrix Cd×q with reduced dimensionality could be obtained:

C = ZTRX (4.1)

The number of optimal principal components could be selected by analysing the Scree

plot, which is a scatter plot of eigenvalues associated to each principal component in a

descending order. A conventional approach is to find the so-called “elbow” of the scree

plot, which is the point at which the rate of reduction attenuates (e.g., the 7-th principal

components in Figure 4.1).

4.1.2 t-Distributed Stochastic Neighbor Embedding

It is often tricky to visualise data of dimensions higher than 3. Reducing the dimensionality

to 2 or 3 using PCA usually result in crowded and inseparable data points when applied

for 2 or 3D visualisation, since PCA performs the computation of variance globally (all

points were considered), and only the first 2 or 3 principal components can only explain

a small portion of variance of the entire dataset. In contrast, t-distributed Stochastic

Neighbor Embedding (t-SNE), an unsupervised method proposed by [40], can overcome the

limitation of PCA [41]. t-SNE works by minimising the Kullback-Leibler (KL) divergence
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Figure 4.1: A scree plot from [1]. The eigenvalues of 23 principal components were sorted
in descending order and plotted as a scatter plot

C between two joint probabilities qij and pij :

C = KL(P ||Q) =
∑
i

∑
j

pijlog
pij
qij

(4.2)

The joint probabilities pij represents the measures the affinity between points xi

and xj in the original input space, which can be converted from the Euclidean distance

between points i and j by means of Gaussian distribution. Considering a low-dimensional

embedding Y = {y1,y2, ...,yn} ⊂ Rd, qij measures the affinity between points in Y using

1-DoF Student-t distribution. The gradient ∂C
∂yi

is given by:

∂C

∂yi
= 4

∑
j ̸=i

(pij − qij)
dij

1 + d2ij
(4.3)

where dij represents the distance between two points yi and yj . By gradient descent with

momentum, Y is updated according to the following rule:

Y(t+1) = Y(t) + s
∂C

∂Y
+ α(Y(t) +Y(t−1)) (4.4)

where s and α are the step size and momentum respectively. Compared to PCA, dissimilar
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points will result in large pairwise distance, and vice-versa for similar points.

4.1.3 Support Vector Machine

Before the rise of neural network-based methods, SVM was considered as the best perform-

ing supervised learning method for classification tasks [42]. SVM works by computing a

set of support vectors using the data points, which forms a binary classification boundary

that separate the data points. For hard-margin SVM, the error tolerance is zero, in other

words, the data has to be separable. In contrast, soft-margin SVM allows some violations

(data points crossing the boundary) and introduces a parameter C in the optimisation

problem [43]:

min
1

2
||w||2 + C

N∑
i=1

ξi

s.t. yi(w
Txi + b) ≥ 1− ξi

ξi ≥ 0

(4.5)

where
∑N

i=1 ξi is the total number of violations. The parameter C controls whether to

prioritise the minimisation of the first term (maximal margin) or the second term (less

violations). The smaller the C, the larger the margin and thus more tolerance to violations,

vice-versa for a larger C. To deal with classification tasks with non-linear data, SVM

makes use of kernel functions K(x,x′) to project the data points to a high-dimensional

space where the they can be linearly separated. For this study, radial basis function

(RBF), a popular kernel for SVM, was chosen, and it has the following form [44]:

K(x,x′) = exp(−γ||x− x′||2) (4.6)

where the parameter γ controls the flexibility of classification boundary. With large γ,

the hyperplane is more curved, leading to small number of violations, while with small γ,

the hyperplane tends to be a linear boundary. Since a multi-class scenario was designed

to evaluate the classifiers, this study employed a One-vs-One (OvO) training strategy.

For N -class classification task, N ∗ (N − 1)/2 binary classifiers were trained, where each

classifier is capable to classify a specific binary subset. A grid search method was employed
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to find the optimum combination of C and γ [44].

4.1.4 Random Forest

RF has been a very successful conventional supervised learning method. The basic building

block of RF is decision tree, which is built from top (root node) to bottom (leaf nodes). In

a decision tree, the input samples are fed into the root node, and in all nodes except the

leaf nodes, a binary test that maximised the information gain ∆H, which is the difference

between the entropy of a given set H(D) and the entropy of the subset H(Di) split from

the parent set:

∆H = −
∑
i

|Di|
D

H(Di) (4.7)

Figure 4.2: An illustration of Random forest classifier

The training stage involves the calculation of probabilities P that instance I arriving

at leaf node l of tree t belongs to class c, ∀l ∈ L, t ∈ T , where L is the set of all leaf nodes

and T is is the set of all trees. RF employs bagging method that randomly samples

from the dataset with replacement to generate N subsets for each of N decision trees.

A majority voting is performed on the predictions given by all decision tree, resulting in

a final prediction. Likewise, RF require parameter tuning for an optimal performance.

However, the number of parameters to be optimised are far more than SVM (e.g., number
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of tree, max depth, max split, etc.). A grid search was also performed to find optimal

parameters.

4.2 Deep Learning Methods

4.2.1 Convolutional Neural Network

CNN has gained a great attention since the success of AlexNet in image classification [45].

In contrast to conventional methods, CNN could be directly applied to raw data, from

which the set of kernels will automatically learn the hidden features by convolution with the

the data in its receptive field (Figure 4.3). The weights in the kernels are updated through

the backpropagation algorithm [46]. A typical CNN-based architecture would stack several

Figure 4.3: An illustration of convolution operation. With a input shape of (4,4), kernel
size of (3, 3), unit step stride and no padding, the output feature map has size (2, 2)

CNN layers with interleaving pooling layer, which down-sample the input data, to produce

robust features. The kernel size, or receptive field of a filter, is an important hyper-

parameter. A large kernel size would capture more global information at the cost of high

complexity. Small kernel size require substantially less computations, and by stacking

multiple layers, the global information could be recovered. However, simply increasing

the number of layers is prone degradation. With deep neural networks, the gradients are

subject to vanishing/exploding problem when propagating to the bottom layer, leading

to undesirable weight updates during backpropagation. Nummerous techniques have been

introduced to mitigate the problem, such as using non-saturating activation function (e.g.,

Rectified Linear Unit) and Batch Normalisation (BN). For instance, Sigmoid is a saturating
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activation function, whose gradient becomes flat for large input. ReLU takes the form of

f(x) = max(0, x), whose gradient is either 0 for x < 0 or 1 for x > 0; for x = 0, ReLU is not

differentiable, and the gradient is set to 0 by convention. According to [47], normalising

the input to each hidden layer could prevent the amplification impact from previous layers,

while accelerating the training process. Despite the abundance of proposed solutions, the

problem of degradation persists in deep neural networks. Dalduzzi et al. [48] claimed that

as the depth of a neural network increases, the gradients resemble white noise, leading

to meaningless weight updates. In the same study, the authors found that the residual

network (ResNet) proposed in [2] could prevent the shattering of gradients.

4.2.2 Residual Learning

Figure 4.4: Structure of the residual block in ResNet [2].

To tackle the degradation problem, He et al. [2] proposed an neural network archi-

tecture named ResNet, which stands for residual network. ResNet assumes that asymp-

totically approaching a target function H(x) is equivalent to approaching the residual

function F (x) = H(x)− x. Thus, the target function becomes F (x) + x. Based on this, a

structure named residual block was implemented using shortcut connections (Figure 4.4).

In this study ResNet18 was used as benchmark. ResNet18 consists of 18 layers: 1 2D

convolutional layer with 64 kernels of size 7x7, followed by 8 residual blocks, where the

number of kernels doubles after every 2 blocks. The final output layer is a fully-connected

layer with N neurons, where N corresponds the number of classes. Figure 4.5 shows the

architecture of ResNet18 adapted for this study. An adaptive average pooling layer was
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added at the beginning to scale the dimension of input data to 224×224, which is required

input size of canonical ResNet18. In the ResNet architecture, the shortcut connections

linking two residual blocks with different input/output dimensions (dashed lines in Fig-

ure 4.5) perform up-sampling operation by convolution with a unit size kernel to avoid

shape mismatch.

Figure 4.5: ResNet18 architecture with the addition of an adaptive average pooling layer,
which scales any input to the size of (224, 224), removing the input dimension limitation.

4.2.3 Knowledge Distillation

The great performance of deep neural networks comes at the cost of high computational

complexity. Vanilla Knowledge distillation (KD) proposed by Hinton et al. [49], an offline

model compression technique, was used in this study to compress and transfer the knowl-

edge learned by ResNet18 to a shallower network. The vanilla KD involves two stages:

1) train an optimal network, which acts as teacher, with unlimited resource provision; 2)

train the a simpler student network which attempts to match the predictions from teacher

network during training. Conventionally, deep learning methods use cross-entropy H as

loss function for classification tasks. In vanilla KD, H and the KL divergence loss DKL

between the class probability distribution predicted by student and teacher are weighted
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averaged (Equation 4.8):

LKD = αt2DKL(σ(zs, T = t), σ(zt, T = t)) + (1− α)H(y, σ(zs, T = 1)) (4.8)

where T is the temperature used in the SoftMax function, which converts the vector of

logits z output by the final layer into a vector of probabilities p, where the probability of

each class is calculated using:

pi =
ezi/T∑
j e

zj/T
(4.9)

4.2.4 Proposed Method: KD-sCNN

In this study, a shallow CNN (sCNN) consisting of few CNN layers was proposed as student

network. The architecture of proposed method, referred to as KD-sCNN, is shown in

Figure 4.6. Note that only the structure within the yellow block is retained after training

stage. The sCNN architecture consisted of 3 stacked CNN layers (3 × 3 kernels) with

interleaving 2 × 8 max-pooling layers. The size was pooling layer was chosen due to the

rectangular shape of input data.

Figure 4.6: The proposed KD-sCNN architecture is shown in the yellow block.
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4.3 Training Strategies

For SVM and RF, the dataset was split into a training set and a test subset in a ratio

of 9 : 1, while for all aforementioned deep learning methods, the dataset was firstly split

into a training and a test subset with a ratio of 9 : 1, and then 20% of training subset was

reserved as validation subset. Theoretically, the samples should have the same distribution,

although being collected from different subjects. However, this is usually not the case in

the real-world due to domain shift [50]. As such, two training strategies were used and

evaluated: standard and leave-one-subject-out strategy. The protocol of the standard

strategy was:

• shuffle the dataset such that samples from various subjects are mixed.

• split the dataset into test and training subsets in a 1 : 9 ratio.

• train the classifier; for conventional classifier, 5-fold cross-validation [51] is used

for tuning model parameters, while deep learning classifier uses a validation subset

separated from the training set in a 2 : 8 ratio.

• evaluate the classifier on the test subset.

The protocol of leave-one-subject-out strategy differed in terms of data partitioning:

• reserve data samples from Subject i as test subset, and the rest of samples serves as

training subset, which also results in a ratio of 1 : 9.

• shuffle the training subset.

• train the classifier using the same parameter-tuning method in standard strategy.

• evaluate the classifier on the test subset.

By comparing the performance of classifiers trained using these two strategies, it was

possible to determine whether samples from a particular subject was domain-shifted, and

assess the robustness of methods toward such shift. Lastly, to assess the methods in
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terms of robustness to radar displacement, the leave-one-channel-out training strategy

was employed:

• shuffle the entire dataset

• split the 2-channel dataset into single-channel training and testing subset

• train the classifier using the same parameter-tuning method in standard strategy.

• evaluate the classifier on the test subset.

The performance of classifier on the test subset could reveal the effect a positional change

of radar, and how each classifier would behave under such effect. Note that the setting

involved during the training of deep learning methods were kept constant across all meth-

ods: Adam optimiser with initial learning rate of 0.001 was used; batch size and training

epochs were 32 and 20 respectively; the temperature used for KD was 10.

4.4 Method Evaluation

Algorithm 1 calculation of cross-test accuracy

Require: n ≥ 2
Require: D = {D1, ..., Dn}
Ensure: Average accuracy across test subjects Aaverage

N ← n
Atotal ← 0
for i← 1 to N do

for j ← 1 to N do
Dtest ← D[j] ▷ Reserve Subject j as test subset
if i ̸= j then

Dtrain ← Stack(Dtrain, D[i]) ▷ Combine data from others
end if

end for
Classifier ← Classifier.Train(Dtrain)
Ai ← Classifier.Estimate(Dtest)
Atotal ← Atotal +Ai

end for
Aaverage ← Atotal

N ▷ This is the cross-test accuracy

For all classifiers trained on the standard strategy, 4 metrics, namely validation

accuracy, test accuracy, model size and average inference time per sample, were used for
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evaluate. The metrics were defined differently for conventional and deep learning methods,

and they were summarised in Table 4.1, where the average inference time per sample was

measured on a Intel Xeon CPU @ 2.30 GHz provided by Google Colab. Conventional clas-

sifiers trained on leave-one-subject-out strategy was evaluated using a cross-test accuracy,

which follows the idea of k-fold cross-validation method [51] (Algorithm 1). Two subjects

that resulted in the lowest test accuracy in leave-one-subject-out strategy were used to

evaluate the deep learning models.

Table 4.1: Definition of performance evaluation metrics

Metric Conventional Methods Deep Learning Methods

Validation Accuracy 5-fold cross-validation accuracy Accuracy on validation set
Test Accuracy Accuracy on test set Accuracy on test set
Model Size Size after saving as .pickle file Size after saving as .pth file
Inference Time Mean time for one inference Mean time for one inference
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Result and Discussion

T
HIS chapter will compare the performance of conventional classifiers versus deep

learning method trained using the 3 proposed strategies, and evaluate them ac-

cording metrics explained in Chapter 4.

5.1 Visualisation of Extracted Features

Channel-wise 2D-2D PCA was applied to the data samples, and the Scree plots were gen-

erated. For both channels, the “elbow” point were found at 10th and 12th PCs along the

column and row Scree plots, respectively. For both channels, 10 column PCs explained

nearly 30% of total variance (Figure 5.1(a,c)), while the 12 row PCs explained approxi-

mately 83% of variance (Figure 5.1(b,d)). Note that for the column Scree plot, only the

first 100 PCs were shown, to ease the identification of “elbow”. Although the “elbow” of

Scree plot was found, due to the redundant information residing in the rest of 924 PCs,

the portion of variance explained up to the elbow PCs was low. However, this should

not cause any harm to the useful information that mainly resided before the “elbow”.

By performing 2D-2D PCA with d = 12 and q = 10, the each channel of the each origi-

nal samples X40×934 was reduced to feature matrix C12×10, which was then flattened to

produce a feature vector c120. By concatenating feature vectors from the 2 channels, the

original sample was reduced to a feature vector x240. The down-sampled data was further
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Figure 5.1: Column and row Scree plots generated by 2D-2D PCA. “Elbow” points clearly
identifiable at 10th column PC and 12th row PC.

Figure 5.2: t-SNE visualisation of 240-D data on a 2-D space.
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Table 5.1: Performance of SVM and RF trained using standard strategy for 6 sub-classes
classification

Method
Validation

Accuracy (%)
Test

Accuracy (%)
Size
(MB)

Inference time
(ms)

SVM 99.1 98.9 1.25 0.122
RF 96.7 97.7 3.25 0.285

Figure 5.3: Confusion matrix generated from the predictions over test set given by SVM
and RF trained by standard strategy.

reduced to 2-dimensional space using t-SNE (Figure 5.2), in which most classes appeared

separable, except the Sit Fall and Walk Fall, which were mixed with each other.

5.2 Results from Classifiers Trained on Standard Strategy

The performance comparison the two classifiers was given in Table 5.1. SVM scored 98.9%

and RF scored 97.7% multi-class classification accuracy in the test set. The memory

occupied by SVM and RF was 1.25 MB and 3.25 MB respectively. RF resulted in larger

memory footprint because it was an ensemble of 90 decision trees (optimal number found

via grid search). The average inference time per sample was 0.122 ms for SVM and 0.285

ms for RF. SVM was 2.3× faster since it only require less computations. The predictions

given by SVM and RF were depicted in the confusion matrices shown in (Figure 5.3),

and the the binary classification accuracy was 100% for both methods, since there was no

misclassification between Fall and Non-Fall classes.
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Figure 5.4: Training and validation accuracy and loss curves, and confusion matrix from
sCNN (top row), ResNet18 (middle row) and KD-sCNN (bottom row) over test set.

Table 5.2: Performance of sCNN, ResNet18 and KD-sCNN trained using standard strategy

for 6 sub-classes classification

Method
Test

Accuracy (%)
Size
(MB)

CPU inference
time (ms)

GPU inference
time (ms)

sCNN 96.6 0.141 4.63 1.19

ResNet18 99.4 43.7 74.4 3.49

KD-sCNN 98.3 0.141 4.63 1.19

For deep learning methods, the baseline model sCNN trained using standard strat-

egy achieved a test accuracy of 96.6%, which was lower than the conventional classifiers.

In contrast, the benchmark ResNet18 only misclassified 1 sample in the test set, resulting

in the highest accuracy (99.4%) among all models, at the cost of high computational com-
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plexity. The memory footprint of ResNet18 was 43.7 MB, compared to the 0.141 MB of

sCNN. The average inference time of ResNet18 was around 74.4 ms on a CPU, which is

more than 16× longer than sCNN. Even with the GPU acceleration, ResNet18 takes nearly

3× longer time for a inference (Table 5.2). KD-sCNN exhibited a performance between

these two, achieving a test accuracy of 98.3%. There was no sign of over-fitting from the

learning curves in Figure 5.4, as all 3 methods showed converging training and validation

losses, with the exception that there were discrepancies between the training and vali-

dation accuracy/loss curves in KD-sCNN. For binary classification scenarios, sCNN and

KD-sCNN gave 1 and 2 misclassifications, resulting in 99.4% and 98.9% accuracy respec-

tively, while ResNet18 correctly classified all samples, as shown in the confusion matrices

(Figure 5.4(right column)).

5.3 Results from Classifiers Trained on Leave-One-Subject-

Out Strategy

Figure 5.5: Cumulative confusion matrix over 10 trials from SVM (left) and RF (right)

trained on leave-one-subject-out strategy.

The cross-subject test accuracy and average test accuracy of SVM and RF trained using

leave-one-subject-out strategy are summarised in Table 5.3. The average test accuracy

were 96.2% for SVM and 91.2% for RF, which were reduced by 2.7% and 6.5% compared
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Table 5.3: Performance of SVM and RF trained using leave-one-subject-out strategy for 6
sub-classes classification

Trial #
SVM Test

Accuracy (%)
RF Test

Accuracy(%)

0 98.9 93.9
1 98.3 97.2
2 96.7 93.3
3 97.2 87.6
4 88.3 87.2
5 93.3 79.9
6 97.2 92.8
7 96.1 92.2
8 96.1 88.3
9 99.4 99.4

Average 96.2 91.2

Table 5.4: Test accuracy of sCNN, ResNet18 and KD-sCNN trained using leave-one-subject-
out strategy. Data from Subject 4 and 5 were reserved as test set respectively.

Method
Test Acc.

on Subject 4 (%)
Test Acc.

on Subject 5 (%)

sCNN 85.5 82.1
ResNet18 93.3 96.7
KD-sCNN 90.5 87.2

to results obtained with standard strategy. According to the cumulative confusion matrices

(Figure 5.5), SVM and RF score 99.2% and 97.2% in binary classification scenario. It could

be also seen that SVM and RF performed differently across the 10 trials. In particular,

both SVM scored lowest test accuracy (88.3%) in trial 4, and RF in trial 5 (79.9%),

implying that data from Subject 4 and 5 have potentially experienced domain shift. The

test accuracy of deep learning methods on the data from these two subjects are given in

Table 5.4. sCNN, ResNet18 and KD-sCNN scored 85.5%, 93.3% and 90.5% on test data

from Subject 4, and 82.1%, 96.7% and 87.2% on data from Subject 5, respectively. sCNN

performed worse than SVM and RF on Subject 4, and with the aid of powerful ResNet18,

the accuracy of KD-sCNN increased by 5.0% compared to sCNN, outperforming SVM

and RF. A similar trend in accuracy was observed on test data from Subject 5, where the

performance of KD-sCNN was significantly boosted by the teacher network ResNet18.
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5.4 Results from Classifiers Trained on Leave-One-Channel-

Out Strategy

The multi-class classification accuracy of classifiers trained on leave-one-channel-out are

given in Table 5.5. Classifiers scored lowest accuracy in this scenario, and generally per-

formed better when tested on Radar 1 data compared to Radar 2 data, except KD-sCNN.

RF was the most impacted classifier, as it average test accuracy was 78.2%, which was

19.5% less than its performance on a standard training strategy, while the accuracy of

ResNet18 only dropped by 8.0%. The trend of reduction aligned with the general accu-

racy trend observed in previous evaluation: SVM was less accurate than ResNet18 and

more powerful than RF and sCNN; with the knowledge distilled from ResNet18, KD-

sCNN was comparable to SVM in terms of accuracy. With regard to binary classification

accuracy, RF still scored the lowest accuracy of 91.7%, while the performance of other

methods was around 95%, with ResNet yielding the best result (97.2%) (Table 5.6).

Table 5.5: Performance of all classifiers trained using leave-one-channel-out strategy for 6
sub-classes classification

Method
Test Accuracy
on Radar 1 (%)

Test Accuracy
on Radar 2 (%)

Average
Accuracy(%)

SVM 87.9 86.4 87.1
RF 80.4 76.0 78.2

sCNN 84.3 85.7 85.0
ResNet18 93.7 89.2 91.4
KD-sCNN 86.5 87.1 86.8

Table 5.6: Performance of all classifiers trained using leave-one-channel-out strategy for
binary classification

Method
Test Accuracy
on Radar 1 (%)

Test Accuracy
on Radar 2 (%)

Average
Accuracy(%)

SVM 96.1 95.6 95.8
RF 92.4 91.0 91.7

sCNN 95.1 95.2 95.2
ResNet18 98.4 95.9 97.2
KD-sCNN 95.0 96.0 95.5
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Figure 5.6: Confusion matrices of all methods trained on leave-one-channel-out strategy.
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5.5 Discussion

5.5.1 General Performance of Evaluated Methods

Impact of Training Strategy to Classification Accuracy

All classifiers achieved over 96% in the multi-class classification task when the distribution

of of test samples were accessible through the training samples from the same subjects.

Knowing the train-test split ratio (9 : 1) and the number of training samples per subject

(179±1), the number of samples required for the classifiers to achieve similar performance

would be ∼ 150. Despite only a half (∼ 75) has to be Fall samples, it is still impractical

for target users to perform such high number of falls. As such, the results of classifiers

trained on leave-one-subject-out strategy would be a more appropriate measure of system

feasibility. The average accuracy of SVM and RF were decreased, however, the latter

suffered a greater reduction. The impact of data from an unseen subject as test set

was also significant in deep learning methods. On the least distinguishable data from 2

subjects, sCNN suffered great accuracy reduction compared to SVM and RF. However,

as the effect of KD emerges, the accuracy of KD-sCNN significantly improved. Such

performance boost from KD was observed in all evaluation, underling the usefulness of

the technique. ResNet18 and KD-sCNN outperformed the counterparts, which is a sign of

stronger ability to learn the target function, and not the specific features of each subject.

Lastly, large accuracy reduction was seen in all classifier trained on leave-one-channel-

out, and potential reasons include: 1) the inter-channel dependencies served as important

features for classifiers trained on data from both channels; 2) the input shape was halved,

leading to reduction of trainable input information, which is critical to deep learning

methods; 3) the information residing in each channel differed largely due to external

factors (e.g., subjects performed activities closer to one radar than the other).

Observations from Misclassifications

Looking at the distribution of misclassfications in the confusion matrices, a few observa-

tions could be made. In standard training, the very few erroneous were prediction mainly
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caused by the confusion between Sit Fall and Walk Fall (Figure 5.3 and 5.4). This trend

aligned with the distribution in the cumulative matrices generated from leave-one-subject-

out strategy evaluation (Figure 5.5), where the misclassification mainly concentrated in

these 2 sub-classes. From this observation, one could speculate that the classifiers learned

the pattern of a pure fall (Stand Fall), but they were less capable in distinguishing the

patterns of the activities before a fall (walking for Walk Fall and sitting down for Sit Fall).

In leave-one-channel-out training, the misclassification concentrated in the 3 sub-classes

of Fall class, which implies an undermined ability to discriminate the patterns in actual

falls. However, the number erroneous predictions was relatively low for all model if the

binary classification scenario was considered. Another interesting observation was the re-

duced ability to distinguish Walk Non-Fall from Sit Fall and Sit Fall generally observed in

classifiers trained on leave-one-channel-out strategy. A potential explaination is that the

activities of latter sub-classes involved some movements towards the radar, which made

them appeared similar to Walk Non-Fall that was pure movement toward radars.

5.5.2 Feasibility of Evaluated Methods for Practical Use

Obtaining high accuracy on the development environment is fairly easy. However, the

practical usefulness of a method would be a very important factor to consider. For instance,

the superiority of ResNet18 under all evaluation scenario cannot compensate its cost of

computation. Considering the scenario when the classifiers have to be deployed on edge

devices to maximise user privacy, the computational cost becomes critical. The time of

inference per sample was around 74 ms for ResNet on a 2.4 GHz CPU, which will be more

than 177 ms when running at full speed on a typical commercially-off-the-shelf single board

computer with 1.0 GHz CPU (e.g., the Rasberry Pi Zero W used in the radar nodes).

On the other hand, SVM, RF and KD-sCNN, require much less resources. KD-sCNN

occupies very small memory compared to RF and SVM. In particular, the size of SVM

will increase exponentially as the training set increments. However, to run a prediction,

SVM and RF require far less computations, which are inherently cross-platform (e.g., SVM

only performs projections and inner products), while deep learning methods rely on the
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framework provider to choose which platform is supported. For this study, the SVM and

KD-sCNN classifier have been found attractive in practice due to their high performance

and low computational overhead. The overall system have outperformed other solutions

from existing systems in terms of test accuracy in standard training strategy. Promising

results were also obtained by the proposed system in dealing with domain shift and sensor

displacement, demonstrating high robustness.
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Chapter 6

Conclusion and Future Works

6.1 Conclusion

In this study, methods were proposed to tackle the challenges of indoor fall detection based

on a multistatic UWB radars system. A dataset consisting of 1795 samples was generated

from 10 subject and pre-processed using high-pass filtering that effectively improved SNR.

Both conventional machine learning classifier, SVM and RF, and deep learning classifiers,

sCNN, ResNet18 and KD-sCNN, were trained and evaluated under different settings. For

conventional classifiers, instead of relying on manual features, the unsupervised feature

extraction method PCA was performed to automatically select the most useful features,

which further enhance the generalisation ability of classifiers. On the other hand, deep

learning method were trained directly on raw data due to their self-contained automatic

feature extraction ability. Three training strategies, namely standard, leave-one-subject-

out and leave-one-channel-out strategy, were employed, which yielded differential results

for each classifier, underlining their respective ability to deal with the constraint given in

each strategy. A comprehensive analysis and discussion was made on the results, from

which a few interesting observation were made. SVM and ResNet18 were the most robust

classifiers as smaller accuracy reduction was observed. After considering the requirement

for practical uses, this study concluded that the conventional classifier SVM and the

knowledge-distilled shallow neural network KD-sCNN, which achieved respectively scored
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98.9% and 98.3% test accuracy when trained under standard strategy. The results of the

proposed system were comparable to the best known system, while keeping the computa-

tional cost to a minimum by sampling at only 10 Hz.

6.2 Limitation and Future Works

The major limitation of this study was the number and age distribution of recruited partic-

ipants. Since only 10 participants were recruited, the statistical significance of this study

is not absolutely guaranteed. Also, the participants were all young individuals with po-

tentially different physical and health condition compared to the target population, which

might further undermine the validity of proposed system on the target users. Another

limitation was the room size, as it was not possible to evaluate the proposed system could

detect falls happened distantly. For future works, it is recommended to repeat the ex-

periments after addressing the mentioned limitations. In addition, since the radar have

penetration ability, it will be interesting to evaluate the system performance with occlusion

between radar and participant.
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