
Department of Electrical and Electronic Engineering

Deep Learning Neural Network for Human Activity Recognition
Optimised for Implementation on Microcontroller Units

Third Year Individual Project

April 2021

Wenqiang Lai

10255317

Supervisor: Dr Alex Casson

Department of Electrical and Electronic Engineering

Contents

Abstract .. 1

1. Introduction ... 2

1.1. Motivation.. 2

1.2. Aim & Objectives .. 3

1.3. Report Structure ... 3

2. Literature Review ... 4

2.1. Machine Learning for Human Activity Recognition .. 4

2.2. Deep Learning Methods .. 5

2.2.1. Convolutional Neural Network: Evolution of Architectures 5

2.2.2. Recurrent Neural Networks: Long Short-Term Memory .. 7

2.3. Edge Machine Learning ... 9

2.3.1. Overview of AI accelerators .. 10

2.3.2. Optimisation for Deployment on Edge ... 11

2.3.3. Frameworks for Model Development .. 13

2.4. Related Works .. 14

3. Methods .. 15

3.1. Dataset Selection .. 15

3.2. Dataset Description & Pre-Processing .. 16

3.3. Proposed Model Architectures .. 18

3.4. Model Training, Conversion and Optimisation .. 20

3.5. Model Deployment & Measurement setup .. 21

3.5.1. Classification Performance .. 22

3.5.2. Latency and Energy Consumption .. 24

3.5.3. Memory Usage ... 26

Department of Electrical and Electronic Engineering

4. Result and Discussion ... 27

4.1. Model Evaluation on PC .. 28

4.1.1. Classification Performance of Proposed Models ... 28

4.1.2. Effect of TensorFlow Lite Optimisation .. 30

4.2. Model Evaluation on Device .. 31

5. Discussion and Conclusion .. 33

5.1. General Discussion .. 33

5.2. Conclusion .. 33

5.3. Limitations and Future Works .. 34

6. References ... 34

7. Appendices .. 38

7.1. Appendix 1 – Code .. 38

7.2. Appendix 2 – Covid19 statement ... 38

Total word count: 9310

Department of Electrical and Electronic Engineering Page 1

Abstract

With advances in chip technology and edge computing, deep learning methods for Human Activity

Recognition have been deployed on various devices, outperforming conventional machine

learning methods. Microcontroller units are ideal candidates for deep learning model deployment,

as they usually contain one or more sensors, making them ideal for the deep learning model to

perform classification. This on-device classification guarantees the privacy of users. However,

neural network-based methods are computationally heavy, for which their integration into

microcontroller units have not yet been evaluated comprehensively. With the recent

improvements in neural network optimisation techniques, there is an increased demand to

leverage these techniques to implement deep learning models on microcontroller units. In this

project, a set of models based on convolutional neural network architecture were trained and

assessed in terms of accuracy, latency, memory usage and power consumption. Models were

trained using TensorFlow 2 library, while TensorFlow Lite library was used for model conversion,

optimisation and deployment on the Arduino Nano 33 BLE board. From the measurement, the

quantised models were up to 14.6x faster and 3.9x more memory efficient compared to non-

quantised models. Such optimisation results ensured the feasible implementation of deep learning

models on low-power microcontroller units for fast on-device inference.

Department of Electrical and Electronic Engineering Page 2

1. Introduction

1.1. Motivation

Connected embedded devices, collectively referred to as the Internet of Things (IoT), are pervasive

in people’s daily lives. The omnipresence of microcontroller units (MCUs) with embedded sensors

such as accelerometers and gyroscopes has created an ideal environment for the mass collection

of raw data [1]. Currently, MCU sensor data is transmitted to a cloud server for processing, which

then enables numerous applications in various domains, from healthcare to smart homes [2].

However, this transmission often requires a stable internet connection, which adds latency to the

transmission’s overall execution. One solution to this issue is performing the task at the data’s

source, also known as edge computing. Edge computing reduces transmission latency and saves

network bandwidth, enhancing performance in areas with limited internet connection [3].

Moreover, edge computing prevents the unauthorised exploitation of user data [4].

MCUs have limited memory capacity, ranging from tens to a few hundred kilobytes, and poor

computing capability which has made them inadequate for use as deployable targets for deep

learning [3]. However, recent optimisation advancements have now made on-device

implementation of deep learning models possible. A deep learning model implemented on edge

computing MCUs might overcome the limitations of cloud-based transmission and carry further

benefits such as rapid real-time inference and low-power usage. This would accelerate

development of data-driven applications in various areas [1].

Deep learning methods are highly proficient at solving complex classification problems, and deep

learning architectures such as Recurrent Neural Networks (RNNs) and Convolutional Neural

Networks (CNNs) exploit the sequential, hierarchical nature of sensor data to perform

classification tasks. Deep learning models therefore can extract abstract features automatically,

without human intervention, and reduce time spent on data pre-processing [2]. Human Activity

Recognition (HAR), a task that classifies a user’s ongoing physical activity based on time-series

sensor data, is a significant deep learning use case [5]. HAR is used in various critical applications

such as chronic disease management, ambient assisted living and physical workload tracking

[6],[7]. HAR applications have traditionally used conventional machine learning classifiers such as

Support Vector Machine (SVM), Decision Trees and Naïve Bayes (NB). These classifiers are unable

to process raw data and therefore require manual feature extraction, leading to reduced accuracy

and problems with overfitting [7]. A recent work, however, suggests that deep learning models

Department of Electrical and Electronic Engineering Page 3

perform better than conventional methods in classification task when trained with a large dataset

[8]. As such, deep learning models implemented on MCUs have become the most promising

solution for HAR issues. For real-world applicability, however, many aspects must be considered

besides prediction accuracy, such as latency and power and memory consumption.

1.2. Aim & Objectives

Given recent advancements in optimising neural networks and an increased demand for applying

on-device neural network-based solutions to real-life scenarios, this project aims to implement

deep learning models for HAR on a MCU then evaluate the relationship between on-device

performance and overhead. An evaluation of real-life implementation will then be provided.

The following objectives must be met to accomplish this research project’s aim:

1) Conduct a literature review of related research focusing on methods used for HAR tasks.

2) Identify state-of-the-art deep learning methods for HAR, selecting a suitable model

architecture.

3) Select an off-the-shelf AI accelerator MCU to be the target device, justifying its selection.

4) Select an open-source machine learning framework to train models and run inference on MCU.

5) Implement the selected model architecture with different configurations to obtain a set of

trained models to be evaluated.

6) Develop an embedded software to feed accelerometer data to the model, run inference and

return inference results.

7) Convert and optimise models to suit the MCU, using the selected framework.

8) Deploy and run the models on the selected MCU and record their performances in terms of

accuracy, latency, power consumption and memory usage.

9) Discuss the overall performance and the practicability of on-device deep learning for HAR.

1.3. Report Structure

The contents of this report are arranged as follows. Section 2 is a literature review of popular deep

learning methods with relevant background knowledge; information on the constraints and

methods for deployment on MCUs will also be explored. Section 3 introduces the selected dataset,

target device and proposed model architecture with different configurations; details on the model

design, testing and deployment will be provided. Section 4 presents the performance results of all

tested models analyses these findings. Section 5 gives a general discussion about the project and

Department of Electrical and Electronic Engineering Page 4

draws conclusions concerning the overall practicability and limitations of on-device deep learning

methods for HAR. The Conclusion contains recommendations for future study.

2. Literature Review

2.1. Machine Learning for Human Activity Recognition

Given the technological advancements and accompanying behavioural changes made over the last

two decades, the amount of data in circulation has grown exponentially. Human intelligence is

often incapable of understanding this data, so machine learning, a rapidly growing subset of the

field of artificial intelligence (AI), may offer a way to make this data more accessible to human use.

Machine learning refers to methods which allow machines to learn automatically from input data

by identifying inherent statistical patterns and making evidence-based decisions on newly input

data, all without human intervention.

Machine learning algorithms are divided into three paradigms: supervised learning, unsupervised

learning and reinforcement learning. Supervised learning refers to a model trained with a labelled

dataset consisting of pairs of input and desired output data [9]. Supervised learning methods have

been successfully adopted for solving classification and regression tasks. In contrast, unsupervised

learning uses an unlabelled training dataset, instead relying on grouping output data with

common attributes into clusters. Finally, reinforcement learning algorithms rely on a closed-loop

feedback scheme in which the algorithm’s interactions with the environment produce qualitative

feedback that provides either rewards or punishments. The ultimate goal of the feedback scheme

is to maximise the reward, or minimise the punishment, received [9].

Human Activity Recognition (HAR) has been an active research field for the past two decades and

is crucial to many prominent applications in various critical domains such as healthcare, human-

centred computing and ambient assisted living [10]. HAR is used to classify people’s ongoing

physical activity using sensor data from an individual’s environmental or body-worn sensors. As

such, supervised machine learning algorithms are potentially ideally suited to HAR fields. While

traditional machine learning algorithms used for classification tasks, such as Decision Trees (DT),

Bayesian Network (BN), Support Vector Machine (SVM) and K-Nearest Neighbour (K-NN), have

demonstrated relatively high accuracy in predicting human activities [10], they can hardly be

implemented in a real world context because they learn from data described by shallow manual

techniques [11]. In contrast, representation learning (or feature learning) methods may streamline

Department of Electrical and Electronic Engineering Page 5

raw data transmission by extracting abstract features automatically [12].

2.2. Deep Learning Methods

Deep learning methods are forms of representation learning whose bioinspired hierarchical

architecture enables the automatic extraction of complex and abstract features. Deep learning

architectures consist of multiple stacked non-linear layers, each represented by numerous

neurons with weighted connections, associated bias term and activation function. In gradient-

based deep learning models, a backpropagation algorithm automatically tunes the weights and

optimises the objective function to evaluate a model’s performance. Thus, the objective function

(often referred to as a “loss function”) measures the error between predictions and desired

outputs. In a stacked deep learning model, each layer is capable of transforming a previous layer’s

input into representation with a greater level of abstraction. This transformative process repeats

throughout all intermediate, or hidden, layers until reaching the output layer, where the final

outputs are represented in a human-understandable result [13].

Deep learning methods have clear advantages when compared to more conventional methods of

extracting raw data, especially for HAR. Manual data collection tasks generally have lengthy

durations, ranging from tens of seconds to a few minutes, which is reduced with deep learning

methods. Meaningful predictions of ongoing activity for HAR require an analysis of sensor data

using fixed-length time windows, which may be interrupted by manual data collection [10]. Deep

learning methods, therefore, have been widely applied to HAR classification tasks. Typical neural

network methods used for HAR include Convolutional Neural Network (CNN) and Recurrent

Neural Network (RNN), both of which exploit spatial and temporal information from time series

data.

2.2.1. Convolutional Neural Network: Evolution of Architectures

The first CNN architecture for pattern recognition, called Neocognitron, was developed by

Kunihiko Fukushima in 1980 [14]. The main drawback to this architecture was its lack of a

supervised learning algorithm (for example, an error backpropagation algorithm). In 1989, Yann

LeCun proposed a series of new architectures, called LeNet, to improve these early CNN

weaknesses. The latest version of LeNet, LeNet-5, has been trained with a backpropagation

algorithm maintaining concepts similar to Neocognitron: local connectivity, shared weights and

down-sampling. Figure 2.1 illustrates LeNet-5’s architecture for digits recognition [15].

Department of Electrical and Electronic Engineering Page 6

Figure 2.1: LeNet-5 for digits recognition [15]

LeNet-5 has two central building blocks, convolutional layers (C1 and C3) and down-sampling

layers (S2 and S4), which are followed by two fully-connected layers (C5 and F6) and a final output

layer.

 In a convolutional layer, each unit is connected to a fixed-size local patch of a previous layer’s

output through a vector of weights called filter, comprising a set of trainable parameters. The

collection of such units forms a feature map. One layer may contain multiple filters, each

producing a feature map by computing dot product with input data. These feature maps then pass

through a 𝑡𝑎𝑛ℎ activation function, adding non-linearity to the output:

𝑓(𝑥) = tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
 (1)

All units within a feature map share the same filter bank, and there may be multiple filter banks

producing an equal number of feature maps within one layer.

In a down-sampling layer, also called a Max-Pooling layer, each unit covers a patch of the previous

layer, through which several features are merged into a single feature by taking the local patch’s

maximum value. Advantages of Max-Pooling layers include reduced input size for the next layer,

reduced computational cost and increased tolerance to small positional changes.

Actual classification is done in the last three layers. Each C5 neuron is connected to all the feature

maps from S4, forming a vector of 120 units. F6 is fully connected to C5, which narrows the vector

dimension to 84. The output layer uses a Euclidean RBF classifier to perform its final classification

[15].

LeNet-5 has been more successful than other conventional methods in recognising patterns of

small-scale images (32 x 32 pixels) [15]. However, it also suffered from various limitations,

Department of Electrical and Electronic Engineering Page 7

including long training time and heavy computational overhead for large-scale image recognition

tasks.

Consequently, CNN architectures were generally ignored by the computer vision community until

2012, when the ground-breaking CNN architecture AlexNet overcame these drawbacks and won

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 [16]. AlexNet classified 1.2

million large scale images with a top-5 error rate of 15.3%, far lower than any competing methods.

AlexNet is a variant of LeNet that contains an increased number of layers and filters per layer,

resulting in around 60 million trainable parameters (around 1000 times more than LeNet-5). Such

a huge network was made possible with the implementation of several new features, such as

dropout regularisation technique, ReLu activation functions and hardware accelerators. Dropout

regularisation techniques are used in the last two fully-connected layers and reduce overfitting by

randomly setting the output of a certain percentage of neurons to zero for each input batch so

that these neurons will not participate in training. ReLu, an abbreviation of Rectified Linear Unit, is

mathematically simpler than 𝑡𝑎𝑛ℎ used in LeNet.

𝑓(𝑥) = max(0, 𝑥) (2)

(2) prevents gradients from approaching zero during backpropagation since its derivative is 1 even

for large 𝑥. Finally, AlexNet is trained on two graphics processing units (GPUs) optimised to

accelerate the calculation of 2D convolution. AlexNet initially used a normalisation layer, Local

Response Normalisation (LRN), to aid with generalisation, but this layer has recently been replaced

by a more effective layer named Batch Normalisation (BN). BN enhances generalisation and

reduces training time by normalising an input batch’s internal distribution [17].

The general structure and features of LeNet and AlexNet are used widely in computer research

and applications. For multi-class classification problems, the softmax function is generally used in

the output layer to map each class’s output scores into a numerical vector, ranging from 0 to 1 and

summing to 1, which represents its probabilities.

2.2.2. Recurrent Neural Networks: Long Short-Term Memory

Although the first RNN architecture was introduced by John Hopfield in 1982, it has gained

widespread attention only in the last two decades thanks to increased computational power and

advancements to RNN architecture. RNNs demonstrate outstanding performance in various tasks

Department of Electrical and Electronic Engineering Page 8

with sequential input data, such as natural language processing, as their architecture allows them

to exploit temporal correlations in input sequences [18].

Figure 2.2 illustrates a simple RNN and its unfolded workflow. For forward computations, current

input 𝑥𝑡 and past state 𝑠𝑡−1 determine the current state 𝑠𝑡 of neurons in the hidden layer, upon

which output 𝑜𝑡 is dependent (𝑡 indicates discrete time step). The matrices U, V and W contain

parameters used for forward computation, which can be updated using backpropagation [12].

Figure 2.2: Architecture of a simple unidirectional RNN [12]

Training RNNs was initially challenging, for gradients in long sequences either explode or vanish

during backpropagation [19]. In 1997, Sepp Hochreiter and Jürgen Schmidhuber overcame these

issues with Long Short-Term Memory network (LSTM), a variant of RNN. LSTM introduced a special

unit, the memory cell, which retained long-term memory. Figure 2.2 illustrates the structure of a

typical memory cell, which uses three internal gates to control the flow of information [12]. The

forget gate, 𝑓𝑡, controls what information taken from the previous step’s memory cell time step,

𝑐𝑡−1, should be kept in the current memory cell, 𝑐𝑡. The input gate, 𝑖𝑡, controls how much of the

new input data should flow into 𝑐𝑡. The output gate, 𝑜𝑡, controls how much information from 𝑐𝑡

should flow into hidden state, ℎ𝑡.

Figure 2.3: Memory cell structure [21]

Department of Electrical and Electronic Engineering Page 9

As described by Figure 2.3, all three gates are multiplicative and attached to a sigmoid (𝜎)

activation function with an output ranging from 0 to 1:

𝜎(𝑥) =
1

 1 + 𝑒−𝑥 (3)

The mathematical formulae for the three gates are as follows:

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑓) (4)

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑖) (5)

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑜) (6)

[𝑊𝑓, 𝑊𝑖 , 𝑊𝑜] and [𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜] are the weights and biases of the forget, input and output gates,

respectively. Note that the candidate memory cell, 𝐶̃𝑡, which participates in updating the current

memory cell’s information, has its own associated weight and bias:

𝐶̃𝑡 = tanh (𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡] + 𝑏𝑐) (7)

The output value of the candidate memory cell lies between -1 and 1, as its activation function is

(1). Finally, (4), (5) and (7) may be used to update the memory cell:

 𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 + 𝑖𝑡 ∘ 𝐶̃𝑡 (8)

Note that new information received from the input gate and candidate memory cell is linearly

accumulated in the current memory cell. Using (6) and (8), the hidden state of the current memory

cell is calculated as follows:

ℎ𝑡 = 𝑜𝑡 ∘ tanh (𝑐𝑡) (9)

As with CNNs, stacked-LSTMs use LSTM layers to extract features from raw data, while actual

recognition tasks are performed by multiple fully-connected layers.

2.3. Edge Machine Learning

The proliferation of the IoT and increased capability of edge devices has created a new computing

paradigm known as edge computing. In contrast to cloud computing, edge computing performs

computations directly at data sources. Edge computing particularly improves applications

requiring real-time responses and/or data privacy, as no data transmission is needed outside the

Department of Electrical and Electronic Engineering Page 10

edge device [22]. HAR is an ideal task for edge computing, as a user’s privacy may be undermined

if the personal data required for recognition is transmitted to a third party. Moreover, deep

learning methods are ideal candidates for HAR tasks, since they learn directly from raw data

generated by embedded sensors. However, implementing deep learning models on edge devices

is challenging, as these models are relatively large and complex for resource-constrained edge

devices, especially MCUs. These problems can be addressed by optimising either the device’s

performance or neural network architecture.

2.3.1. Overview of AI accelerators

Different hardware manufacturers are currently producing AI accelerators to enhance deep

learning-based tasks from the hardware perspective. These accelerators are based on GPUs, field-

programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs), which allow

more efficient computation than generic CPUs. In recent years, vendors have begun developing AI

accelerators for edge implementation. For example, the Coral Dev Board by Google is a single-

board computer with Tensor Processing Unit (TPU), an ASIC designed by Google itself [23]. These

devices, however, are not yet popular, and their cost is relatively high when compared with typical

embedded processors.

Current off-the-shelf chips are often leveraged to develop supporting software kernels for AI

acceleration. For example, Arm Cortex-M series processors can now accelerate common neural

networks by leveraging kernels that accelerate typical neural network layers (see details in section

2.3.2). Hardware manufacturers such as Arduino and Sparkfun Electronics have developed MCUs

for deep learning-based tasks using Arm Cortex-M processors.

Figure 2.4: Arduino Nano 33 BLE Sense (left) and SparkFun Edge Development Board (right) [24][25]

Arduino Nano 33 BLE Sense is an Arduino product designed for AI acceleration. The board is based

on the nRF52840 MCU, with a 32-bit Arm Cortex-M4F processor with 64MHz clock speed [24]. The

board features a direct memory access module (DMA) and an inertial memory unit (IMU)

Department of Electrical and Electronic Engineering Page 11

consisting of one 3D accelerometer, one 3D gyroscope and one 3D magnetometer. The board’s

size (45𝑚𝑚 × 18𝑚𝑚) and weight (5g) are ideal for unobtrusive applications. In addition to its

IMU, the Arduino Nano has a variety of embedded sensors such as a microphone, pressure sensor

and temperature sensor. These sensors provide abundant data used for a variety of neural

network-based applications. Additionally, a power management unit (PMU) allows one to

automatically switch between different operational modes to achieve the lowest power

consumption.

The SparkFun Edge development board is a counterpart to the Arduino Nano, manufactured by

SparkFun Electronics. The board is based on the Apollo3 Blue MCU, which also has an Arm Cortex-

M4F processor. The nominal CPU clock frequency is 48MHz, which can be doubled in burst mode.

SparkFun Egde features an ultra-low power MCU, consuming 6𝜇𝐴 per MHz when running and only

1𝜇𝐴 when asleep [25]. The board contains one 3D accelerometer, one microphone and a camera

connector.

There are many other off-the-shelf MCUs that share similar features and constraints, such as the

STM32F746, Adafruit EdgeBadge, Espressif ESP-32 etc. Comparison of these MCUs is beyond the

scope of this project.

2.3.2. Optimisation for Deployment on Edge

Edge device optimisation is achieved by developing specific low-level computation kernels for

generic processors to speed up common operations in neural networks. For example, Arm Cortex-

M CPUs have a set of kernels, CMSIS-NN, designed specifically to enhance performance and

reduce memory footprint when running neural networks [26]. The general structure of a CMSIS-

NN neural network kernel shown in Figure 2.5:

Figure 2.5: General structure of a neural network kernel in CMSIS-NN [26]

Department of Electrical and Electronic Engineering Page 12

The kernel consists of NNFunctions and NNSupportFunctions. NNFunctions are designed to

implement common neural network operations such as convolution and max pooling, while

NNSupportFunctions complement NNFunctions with utilities such as data type conversions.

According to [26], CMSIS-NN increases the throughput and energy efficiency of neural networks by

4.6x and 4.9x, respectively.

Neural network optimisation is currently an active research topic. Howard et al. [27] have recently

proposed a parameter-efficient CNN architecture, MobileNet, for use in embedded applications.

MobileNet utilises a new technique called depthwise separable convolution, which splits standard

convolution into two distinct operations, depthwise convolution and pointwise convolution.

Figure 2.6: Depthwise convolutional filters [27] Figure 2.7: Pointwise convolutional filters [27]

In a depthwise convolution layer for M input channels, each input channel is convolved using a

single filter sized 𝐷𝑘 × 𝐷𝑘, producing M feature maps. The output of depthwise convolutions is

combined in the pointwise convolution layer by applying N filters sized 1 × 1 × 𝑀, where N is the

number of output channels. Such architecture has been shown to significantly reduce computation

and model size with minimal impact on accuracy [27].

Another active research direction is the precision reduction of neural networks, also known as

quantisation. Generally, deep-learning model parameters are trained using 32-bit floating-point

data representation. Studies demonstrate that low-precision fixed-point data representation

achieves similar performance to benchmark results [28]-[30]. Quantisation may be applied during

training, known as quantisation-aware training, or afterwards, known as post-training quantisation.

Quantisation-aware training requires a consistent procedure from design phase to

implementation phase [28],[31], while post-training quantisation converts pre-trained floating-

point models to fixed-point models.

Jacob et al. [31] have proposed a quantisation scheme, Integer-arithmetic-only inference

quantisation, which allows performing inference with 8-bit integer input, output, weights and

activations; only the bias vector is in 32-bit integer format. Figure 2.8 provides an illustration of

Department of Electrical and Electronic Engineering Page 13

this scheme.

Figure 2.8: Integer-arithmetic-only quantisation [31]

2.3.3. Frameworks for Model Development

There are various open-source machine learning frameworks for the development of deep

learning models, including Caffe, Caffe2, PyTorch, Keras and TensorFlow. Caffe2 has recently

merged with PyTorch, while Keras has been integrated into TensorFlow 2.0. For edge

implementation, TensorFLow and PyTorch offer lightweight solutions, namely TensorFlow Lite and

PyTorch Mobile [32],[33]; the latter, however, does not support embedded systems without file

systems.

TensorFlow was released by Google in 2015, aiming to facilitate the development process of large-

scale machine learning models [34]. The libraries come in the form of Python libraries to provide

high-level abstraction, but the kernels are written in C++ for better performance. TensorFlow

supports a wide range of target devices, including generic processors, as well as edge devices.

With the integration of Keras library into TensorFlow 2.0 released in 2019, the development

process became even easier. TensorFlow Lite is the framework released by Google to provide

support for model conversion and optimization for edge devices, e.g., conversion and optimization

APIs [32]. For resource constrained MCUs, Google offered TensorFlow Lite for Microcontroller

(TLFM), which is the state-of-the-art open-source framework for running inference on MCUs.

TLFM uses a unique approach based on an interpreter that simulates and live neural network

model. The interpreter-based approach increases portability and flexibility [35]. Other frameworks

for inference on embedded devices include: the open-source Embedded Learning Library (ELL) by

Microsoft [36], which is a cross-compiler that generate machine code to run on the device;

STM32Cube.AI, which could convert and optmise the pre-trained model for STM32-series MCUs

[37].

Department of Electrical and Electronic Engineering Page 14

2.4. Related Works

There have been many research and works being conducted to evaluate the on-device

performance of deep learning methods. This review of literature aimed to identify the state-of-

the-art methods for HAR and aid the model architecture selection. Besides, previous works with

similar research scope were also reviewed to help design the testing process.

[38]-[40] are early works conducted using classical machine learning algorithms, such as Decision

tree, Naïve Bayes, K-Nearest Neighbors and Hidden Markov Models. Despite that high

classification performance were achieved, these conventional algorithms suffered from a common

drawback, as these algorithms only learn from data described by manually engineered features.

Since the success of AlexNet in 2012, there have been a rise in the number of research using CNN

architecture. Ronao and Cho [1] proposed a multi-layer CNN architecture with the attempt to

apply convolutional kernels along the time axis. The proposed model showed the capability of

exploiting the temporal correlation between time series data, achieving an overall accuracy of

94.79%. Ordonez and Roggen [41] proposed a classifier architecture consisting of Deep CNN

(DCNN) and LSTM, achieving F1 scores of 0.93 and 0.958. F1 score is described later (section 3.5.1).

This classifier worked by applying convolutional kernels to the input sensor signal image to extract

abstract features and use LSTM to extract temporal dependencies in the feature maps. In a more

recent work by Zebin et al. [5], a stacked CNN model was proposed, which obtained an accuracy of

96.4%. The effect of quantisation was evaluated in this work, which achieved 4x+ mode size

reduction.

Zhang et al. [42] investigated the performance of various neural networks by deploying them on

MCUs. This work evaluated the on-device performance by setting out three memory constraints.

The model accuracy was measured under each of the constraint. The best performing model

architecture was depthwise separable convolutional neural network (DS - CNN), which obtained

94.4% accuracy. Novac et al. [6] conducted a similar research on the relationship between the

performance and memory usage of on-device deep learning model. This work compared the

performance of supervised learning, unsupervised learning and semi-supervised learning

algorithms. This work achieved an accuracy of 92.88% for supervised learning (CNN) and 84% for

unsupervised learning (Self Organising Map). This work attempted to evaluate the models using

battery run-time as a metric. A 19 hour batter run-time was reported for its best performing

supervised model. A detailed review of other deep learning related works is available in [43]-[45].

Department of Electrical and Electronic Engineering Page 15

3. Methods

In this section, the experimental method for on-device HAR performance evaluation is described in

detail. Figure 3.1 is a flowchart illustrating the key experimental procedures. Python 3.8 and its

built-in third-party libraries were used to pre-process the dataset, while TensorFlow 2.3.1,

available as a Python library, was the framework used to train the model. The APIs from

TensorFlow Lite were used for model conversion and optimisation.

The embedded device used for evaluation was Arduino board, which is highly compatible with

TensorFlow Lite. TFLM, available as an Arduino library, was used for on-device inference. Arduino

IDE and its built-in helper functions were used to develop the embedded software. Details of the

experimental procedures are given in the following sub-sections. All code used in this project

could be found in the GitHub repository link in Appendix A1.

Figure 3.1: Experimental procedures for on-device performance evaluation

3.1. Dataset Selection

The dataset used to train a model determines its functionality and performance, and it is ideal to

train a model using a dataset produced specifically for that model’s requirements. Unfortunately,

collecting and processing a large amount of raw data is usually costly, and due to this project

constraints, a public dataset for HAR was selected for training and testing purposes. Several

datasets, including Opportunity [46], Pamap2 [47], WISDM [48] and the dataset donated by

Department of Electrical and Electronic Engineering Page 16

Anguita et al. (referred to as UCI-HAR dataset hereinafter) [49], were available on the UCI

Machine Learning Repository.

The desired dataset had several important requirements. Since the goal of this project was to

perform HAR on a body-worn device, the dataset had to originate from unobtrusive wearable

devices with embedded sensors. The dataset also had to be balanced in terms of sensor quantity

and activity types. A high number of sensors provide great amounts of data from which to learn,

improving classification accuracy. However, some datasets have an excessive number of sensors

for training a model meant to be implemented on devices with a limited amount of sensors.

Therefore, the Opportunity dataset, which contains five sensors, was excluded. Moreover,

datasets Pamap2 and WISDM dataset were also excluded due to having too many activities types,

which could lead to inefficient classification [5]. Ultimately, the UCI-HAR dataset was selected for

training and testing because it collected data from only two sensors, an accelerometer and a

gyroscope, which was then classified into six basic daily activities.

3.2. Dataset Description & Pre-Processing

Data from a UCI-HAR dataset was collected from a group of 30 subjects wearing a smartphone

(Samsung Galaxy S II) on their waist. The accelerometer and gyroscope, embedded in the

smartphone, sample the triaxial total acceleration and triaxial angular velocity at a constant rate of

50 Hz. The body’s estimated acceleration was obtained using a Butterworth low-pass filter with

0.3 Hz cut-off frequency, eliminating the low frequency gravitational component of total

acceleration. Both total acceleration and estimated body acceleration were recorded in gravity

unit ‘g’ (equivalent to 9.80665 𝑚/𝑠2), while angular velocity was measured in 𝑟𝑎𝑑/𝑠. Each axis

corresponds to one input channel, so the three triaxial measurements give nine channels. Time

series data from each channel is segmented into fixed-width sliding-windows (128

samples/window), with a 50% overlap. The dataset classifies six activity types which are associated

with numbers ranging from 1 to 6, as shown in Table 3.1.

Table 3.1: Activity types and their associated number

Activity type Walking Walking
upstairs

Walking
downstairs

Sitting Standing Lying

Activity number 1 2 3 4 5 6

The dataset contains 10,299 labelled activities and was split into a training set and a test set,

Department of Electrical and Electronic Engineering Page 17

accounting for 70% and 30% respectively. A 20% samples in training set was hold as validation set,

which were used during training. The test set was used for post-training model evaluation. Before

starting the training process, the dataset has to be pre-processed by applying the following

methods:

1) Scaling: All values in the dataset are scaled to lie within a small range of value, in order to

accelerate computation and avoid training bias caused by large outliers in the dataset. Scaling

is accomplished using the “MinMaxScaler” function from Python Library’s scikit-learn class.

This function acts as a scaler for each input channel, normalising all values into a predefined

range according to the channel’s minimum and maximum numbers. The selected range is [-1,

1], since the dataset contains negative values. Scaling is represented by the following function:

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 (𝑥) =
(𝑥−𝑥𝑚𝑖𝑛)(𝑚𝑎𝑥−𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
+ 𝑚𝑖𝑛 (10)

Where 𝑥 is the scaled value, 𝑥𝑚𝑎𝑥 𝑎𝑛𝑑 𝑥𝑚𝑖𝑛 are a channel’s maximum and minimum values

and 𝑚𝑎𝑥 and 𝑚𝑖𝑛 represent the scaling range.

2) Segmentation, Combination and Reshaping: Raw data from the time series must be

segmented into a fixed-width sliding window, enabling the CNN model to exploit the temporal

correlation between samples. As mentioned, samples from each channel are segmented into

windows of 128 samples, with sample windows from 9 channels combined together to create a

matrix sized 128x9. Since 2D convolutional layers require 3D input sensors, input data is

reshaped to 128x9x1. The “dstack” and “reshape” functions in Numpy library were used to

combine and reshape the samples.

3) One-Hot Encoding for Activity Labels: the activity labels provided in the UCI-HAR dataset

consist of integer numbers between 1 and 6, each represents an activity as shown in Table 3.1.

These activity labels are categorical data which should be converted to One-Hot encoded

labels. Since there are 6 categories, One-Hot encoding will create a binary label vectors of size

6, and the correct activity label is represented by 1 (Figure 3.2). Since index of arrays starts

from 0, and the activity labels should be subtracted by one before encoding. One-Hot encoding

could be done by using ‘to_categorical’ function from Keras library.

Department of Electrical and Electronic Engineering Page 18

Figure 3.2: One-Hot encoding for activity labels

3.3. Proposed Model Architectures

As discussed in the Introduction, deep learning neural networks outperform traditional methods

of HAR classification when dealing with large amounts of data. Convolutional Neural Network

(CNN) and Recurrent Neural Network (RNN) architectures have often been used to develop HAR

classification models. CNN architecture has been selected due to its high performance in previous

cases [50] and its ability to handle small positional changes. Data segmentation allows CNN to

exploit temporal correlations between data within one window of activity [5].

Figure 3.3: Stacked-CNN architecture and specifications

One-Hot Encoding

Department of Electrical and Electronic Engineering Page 19

A stacked-CNN model consisting of stacked 2-D convolutional (Conv2D), 2-D max-pooling

(MaxPool2D), flatten, dropout and fully-connected layers has been proposed. The general model

architecture and setting specifications used in this project are illustrated in Figure 3.3. Conv2D is

used instead of the 1-D convolution neural network (Conv1D), the usual selection for sensor

signals, because TensorFlow Lite, which deploys models on MCUs, only supports TensorFlow 2

operational subsets; these subsets do not include Conv1D. The combination of sample windows

from 9 channels are figured as an image with the dimensions 1x128x9. Each Conv2D layer is

followed by a MaxPool2D to reduce the model complexity and increase model robustness. The

output feature map of the last max-pooling layer feeds into the flatten layer, where feature maps

are flattened into a 1-D tensor for further export. A dropout layer with dropping rate of 0.1 is

inserted between the flatten and output layers to improve model generalisation.

The training setting will contribute to the performance variation of the model; however, the

model size will not be affected. Therefore, some parameters in the setting were set to constant

values to facilitate the training process. The optimiser algorithm chosen for the model was Adam,

which needs minimal computational overhead [51]. The categorical cross-entropy loss function

was selected and used for backpropagation, as it is ideal for HAR tasks, multi-class problems with a

single output label. The activation function used for feature extracting-layers is ReLu, selected for

its computational simplicity, while ‘softmax’ activation fucntion is used in the output layer to

produce a vector containing the probabilities of each class. Learning rate is set to 0.0005 to

prevent training loss from diverging sooner than intended.

Batch size refers to the number of samples fed into the model during each iteration, while number

of epochs signifies the number of times the entire training dataset passes through the model. The

number of batches is set to 64, the number of epochs is set 30.

The performance and computational budget of a CNN model is associated with its parameters,

including number of layers, number of filters per layer, filter size and stride. To ease the evaluation

of the relationship between performance and overhead, several architecture configurations are

proposed by varying the number of stacked CNN layers 𝑁 and the number of filters per layer 𝑀,

while keeping filter size and stride constant. The details of these configurations are summarised in

Table 3.2.

Department of Electrical and Electronic Engineering Page 20

Table 3.2: CNN architecture configurations

Model Constants Conv2D : filter size = 4 x 4; stride = 2 x 4

MaxPool2D: filter size = 2 x 2; stride = 2 x 2

Configuration Name L1F16 L1F32 L2F16 L2F32 L3F16 L3F32 L4F16 L4F32

No. of Layer (N) 1 1 2 2 3 3 4 4

No. of Filter per Layer (M) 16 32 16 32 16 32 16 32

3.4. Model Training, Conversion and Optimisation

The proposed model configurations have been trained on a standard personal computer with an

Intel Dual Core i5 CPU (1.8 GHZ) and 4 GB memory, using TensorFlow library version 2.3.1. The

sequential model and the Conv2D, MaxPool2D, Dropout, Flatten and Dense (Fully-Connected)

layers are taken from the Keras library. After the building and training process, the TensorFlow

models are saved as a protocol buffer with filename extension ‘.pb’. For edge implementation, the

model must be converted to TensorFlow Lite, which employs the FlatBuffer format. FlatBuffer is

more memory efficient, so a size reduction is expected after this conversion. The conversion is

performed using the converter API provided by TensorFlow Lite. The converted model (hereafter

referred to as the TFlite model) is then stored with the extension ‘.tflite’ with an approximate 4x

size reduction. Figure 3.4 illustrates the workflow for exporting a TensorFlow Lite model.

Figure 3.4: Workflow for exporting TensorFlow Lite model [35]

Before deploying the model on the target device, optimisation techniques, also known as post-

training quantisation, may be used to reduce model size and latency. The model uses 32-bit

floating point data representation as a default, but such high precision is often unnecessary for

inference. Therefore, quantisation techniques are used to convert the model’s weights and

activations to fixed-point data representations (8-bit or 16-bit integers), which will facilitate

computations and reduce memory footprint. Several quantisation schemes are provided by

TensorFlow Lite that are suited to different scenarios: dynamic range quantisation, full integer

Department of Electrical and Electronic Engineering Page 21

quantisation and float16 quantisation.

Table 3.3: Quantisation scheme specifications [32]

Scheme Expected optimisation Recommended for
Dynamic range 4x smaller; 2x-3x faster Generic CPUs

 Full integer 4x smaller; 3x+ faster Generic CPUs and MCUs

Float16 2x smaller; GPU acceleration Generic CPUs and GPUs

Dynamic range quantisation scheme act by reducing the precision of weights, from single-

precision floating-point (float32) to 8-bit integer (int8). However, the weights are converted back

to floating-point at inference, and the outputs are also stored using floating-point representation.

Thus, dynamic range-quantised models are expected to be 4x more memory efficient, and 2x-3x

faster. In contrast, full integer quantisation converts all tensors into 8-bit integer, including

activations. Therefore, it is recommended for devices using int8 data representation, e.g., MCUs.

Full integer should give a greater latency reduction due to its simplified computation. Lastly,

float16 is the quantisation scheme recommended for GPUs, which use 16-bit data representation.

The size reduction effect is halved compared to 8-bit quantisation, but float16 enables GPU

acceleration. The quantisation was applied the TFlite model using the provided API. For Full

integer quantisation, a representative dataset was required to calibrate the variable tensors, e.g.,

activations, input and output tensors. Therefore, 100 samples from the training set were selected

to be the representative dataset. Note that by applying quantisation, insignificant or small

accuracy loss is expected [32].

After being quantised, the TFlite model was converted into a C source file containing a char array

using the ‘xxd’ command [32]. This C source file was then incorporated in the embedded software

developed for the target device to handle the input sensor data and output inference outcomes.

3.5. Model Deployment & Measurement setup

The target device selected for model deployment is the Arduino Nano 33 BLE (hereafter referred

to as Arduino Board) described in Section 2.3.1. The Arduino Board was selected for two reasons:

first, Arduino Nano hosts a MCU based on the Cortex-M4 chip supported by AI acceleration

kernels, which accelerate typical computations in neural networks; second, the Arduino platform

provides many useful built-in functions that can be used for performance evaluation, reducing

software development time.

Department of Electrical and Electronic Engineering Page 22

TensorFlow Lite library version 2.1.0-Alpha is used to implement the on-device inference. An

embedded software is developed under Arduino IDE using the library in order to provide an

interface for the TFlite model. The software is designed to: 1) incorporate the C-source file

containing the model, which is then used to instantiate an interpreter object; 2) feed data into the

interpreter, run inference and return the results to the PC for further analysis.

The most intuitive way to evaluate the performance of an on-device deep learning model is to test

it, using data collected from the device’s embedded sensors. Unfortunately, if the sensors

embedded in the MCU differ from those used to collect the training dataset, the newly collected

data has a different pattern and thus cannot evaluate the model’s performance. As such, an

alternative approach has been conceived: rather than collecting raw data from the environment,

test data from the UCI-HAR dataset is streamed directly into Arduino Board via USB, easing the

measurement process. The models were measured and evaluated for four aspects: classification

performance, latency, energy and memory usage.

3.5.1. Classification Performance

The classification performance of models in Table 3.2 are measured on both PC and Arduino Board,

for comparison. TensorFlow provides an API to evaluate the model’s overall accuracy on a given

test set. The test set, consisting of 2,947 sample windows, was used for accuracy measurement. If

the dataset has an unbalanced sample distribution – for example, if there are too many samples

for one class and too few for others – accuracy might be compromised. It is therefore worth

evaluating the model’s performance using additional metrics.

Confusion matrix is a tool used to evaluate classifier models. Given the model’s six activity classes,

a 6x6 matrix is utilised (Figure 3.5) in which rows represent actual class (desired class) and columns

represent predicted class. Every cell in the matrix is labelled; to introduce cell definitions it is

necessary to reduce the 6x6 matrix into six 2x2 confusion matrices to enable a binary classification

(True or False) problem. For example, Figure 3.6 shows a 2x2 confusion matrix for the class

labelled ‘Walking’: True Positive (TP) and False Positive (FP) correspond to the number of correct

and incorrect predictions of ‘Walking’ class; True Negative (TN) and False Negative (FN)

correspond the number of correct and incorrect predictions of the remaining classes.

Department of Electrical and Electronic Engineering Page 23

Figure 3.5: Confusion matrix for performance evaluation

Figure 3.6: Confusion matrix for class ‘Walking’

With the aid of the confusion matrix it is possible to calculate key metrics for performance

evaluation. These metrics include overall accuracy, precision, recall (True Positive rate) and F1

score:

1) Overall accuracy. Overall accuracy is the most intuitive metric for performance evaluation,

which is also used during training. It is calculated by dividing the total number of correct

predictions (TP + TN) to the total number of data entries (TP + TN + FP + FN):

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
 (11)

2) Precision. Precision indicates how much positive predictions are correct. It is calculated by

dividing the number of correct positive prediction (TP) to the total number of positive

prediction (TP + FP):

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃+𝐹𝑃
 (12)

Department of Electrical and Electronic Engineering Page 24

3) Recall (True Positive Rate). Recall is concerned with how many correct positive predictions

have been made, when it is actually positive. It is computed by dividing correct positive

prediction (TP) to the total number of actual positive data entries (TP + FN):

 𝑅𝑒𝑐𝑎𝑙𝑙(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒) =
𝑇𝑃

𝑇𝑃+𝐹𝑁
 (13)

4) F1 score. F1 score acts as the harmonic mean of precision and recall, and it ranges from 0 to 1.

It is commonly used to measure the robustness of the model, as it analyses the results in a

comprehensive manner:

𝐹1 𝑠𝑐𝑜𝑟𝑒 =
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
 (14)

Overall accuracy and F1 score were calculated for each of the trained models. The confusion

matrix was plotted using the “confusion_matrix” function from scikit-learn Python library.

3.5.2. Latency and Energy Consumption

Latency refers to time elapsed while processing one data sample and receiving an inference result.

The Arduino built-in function “millis()” is used to evaluate latency. “Millis()” returns time passed

since a program’s execution in milliseconds [52]. For input data entry 𝑖, time 𝑡𝑠𝑡𝑎𝑟𝑡_𝑖 is recorded as

soon as input data is fed into the interpreter, and 𝑡𝑒𝑛𝑑_𝑖 is recorded when the interpreter returns

an output. Average latency in milliseconds can be computed using the following equation:

𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =
∑ 𝑡𝑒𝑛𝑑_𝑖−𝑡𝑠𝑡𝑎𝑟𝑡_𝑖

𝑛−1
𝑖=0

𝑛
 (15)

This approach is easy to implement and avoids the need for an external timer, which may

introduce error due to signal transmission time. Since Arduino is single-threaded, this approach

should give a reliable estimation of the execution time taken by the interpreter to run an inference.

Power consumption for running inference is estimated using the product specification nRF52840

MCU hosted by Arduino Board, and the reason is given in Appendix A2. The MCU has a PMU that

automatically switches the device between different modes depending on the demand of any

given moment. A constant voltage 𝑉 of 3.3V is supplied to the MCU, while current consumption

varies depending on the MCU’s execution mode. The power consumption for each case can be

calculated using the power equation (16).

Department of Electrical and Electronic Engineering Page 25

𝑃 = 𝑉 × 𝐼 (16)

where 𝐼 could be 𝐼𝑠𝑦𝑠𝑡𝑒𝑚_𝑂𝑛, 𝐼𝑠𝑦𝑠𝑡𝑒𝑚_𝐼𝑑𝑙𝑒 and 𝐼𝑠𝑦𝑠𝑡𝑒𝑚_𝑂𝑓𝑓 , the current consumption in different

modes. The specifications for this project and power consumption calculated from (16) are

summarised in Table 3.4.

Table 3.4: Electrical specifications of nRF52840 in three modes[53]

MODE Description Current Cons. (𝝁𝑨) Power Cons. (𝒎𝑾)

System On CPU running inference 6300 20.790

System Idle CPU idle, DMA running 1202.35 3.968

System Off CPU off, RAM retained 1.86 0.006

Note that the startup time for the CPU to wake up from Idle (3𝜇𝑠) or Off (16.5 𝜇𝑠) modes are

ignored, as they are insignificant to the calculation. Calculated power consumptions are used to

provide an estimation of energy consumption. Energy is consumed in mWh during different

phases of a complete activity cycle.

𝐸𝑖𝑛𝑓 = 𝑃𝑠𝑦𝑠𝑡𝑒𝑚_𝑂𝑛 ×
 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦

3600
 (17)

𝐸𝑖𝑑𝑙𝑒 = 𝑃𝑠𝑦𝑠𝑡𝑒𝑚_𝐼𝑑𝑙𝑒 ×
𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔

3600
 (18)

𝐸𝑜𝑓𝑓 = 𝑃𝑠𝑦𝑠𝑡𝑒𝑚_𝑂𝑓𝑓 ×
𝑡𝑠𝑙𝑒𝑒𝑝

3600
 (19)

where 𝐸𝑖𝑛𝑓, 𝐸𝑖𝑑𝑙𝑒 and 𝐸𝑜𝑓𝑓 signify energy consumed during inference phase, idle phase and sleep

phase, respectively. The length of the inference phase depends on the computation speed of the

target device and the model’s complexity. The Idle phase is the period of time taken before

running inference, during which a full sample window is collected in “System Idle” mode, with

the CPU awakened when data is ready. According to [49], the sampling rate of UCI-HAR dataset is

50 Hz and the sampling time 𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 for a 128-sample window is 2.56s. The sampling rate

should be kept constant, as variations would change the collected signal pattern. Assuming a

window overlap of 𝛿 (ranging from 0 to 1), 𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 can be expressed with the following

equation (20):

𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 2.56 × (1 − 𝛿) (20)

Sleep phase is the period of time between each activity recognition. Sleep phase is used to reduce

Department of Electrical and Electronic Engineering Page 26

energy consumption, since continuously running inference is unnecessary in real life scenarios.

Taking 𝑡𝐻𝐴𝑅 as the total time needed to perform one complete activity recognition, 𝑡𝑠𝑙𝑒𝑒𝑝 is

𝑡𝑠𝑙𝑒𝑒𝑝 = 𝑡𝐻𝐴𝑅 − 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 (21)

where 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦 is calculated from (15) and 𝑡𝑠𝑙𝑒𝑒𝑝 is specific to application settings. The overall

energy consumption in 𝑚𝑊ℎ for a complete activity recognition cycle is the sum of the results of

(17)-(19):

𝐸𝐻𝐴𝑅 = 𝐸𝑖𝑛𝑓 +𝐸𝑖𝑑𝑙𝑒 + 𝐸𝑜𝑓𝑓 (22)

In a real-life setting, ongoing physical activity usually lasts for at least tens of seconds; therefore, a

time interval may be inserted between each recognition of activity, during which the device may

be turned off to extend battery life.

Table 3.5: Application settings for different scenarios:

Setting inference per min(ipm) 𝒕𝑯𝑨𝑹(𝒔) Overlap (%) 𝒕𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈(𝒔)

S1 30 2 50 1.28

S2 10 6 50 1.28

S3 1 60 0 2.56

Three HAR application settings are proposed in Table 3.5. S1 assumes cases where continuous

activity recognition is required to ensure prompt and accurate inference. S2 makes a trade-off

between promptness and energy efficiency by inserting a few seconds of interval between

inferences; this should provide satisfactory results in most cases. S3 concerns scenarios in which

distant activity recognition is needed to determine user status, e.g., determining whether a user

has been in one position for a certain period of time. Given a standard coin battery capacity

𝐸𝑏𝑎𝑡𝑡 = 100 𝑚𝑊ℎ and using information from Tables 3.6 and 3.7, as well as results calculated

from (15) and (22), expected battery run-time is calculated as follows:

𝑡𝑏𝑎𝑡𝑡𝑒𝑟𝑦 =
𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦

(𝑖𝑝𝑚×60)×𝐸𝐻𝐴𝑅
 (23)

3.5.3. Memory Usage

TFlite models do not rely on dynamic memory allocation while running inference [35]. Rather, a

fixed RAM area called the Tensor Arena is allocated beforehand to store input and output tensors,

and any intermediate arrays. The overall memory usage of a TFlite model is the sum of the Tensor

Department of Electrical and Electronic Engineering Page 27

Arena’s memory and that of the model itself (ROM):

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑠𝑎𝑔𝑒 = 𝑇𝑒𝑛𝑠𝑜𝑟 𝐴𝑟𝑒𝑛𝑎 𝑆𝑖𝑧𝑒(𝑅𝐴𝑀) + 𝑇𝐹𝑙𝑖𝑡𝑒 𝑀𝑜𝑑𝑒𝑙 𝑆𝑖𝑧𝑒(𝑅𝑂𝑀) (24)

The size of a model could be directly observed on a PC. However, the size of the Tensor Arena

depends on both the TFlite model and the target device’s architecture, which makes providing a

quick and accurate estimation of memory needed for the Tensor Arena impossible. This project,

therefore, sets the Tensor Arena size to 100KB, which is big enough to accommodate all evaluated

models, and only takes the TFlite model size into consideration. This approach ensures that the

evaluation of smaller-sized models, which need less of the Tensor Arena’s memory, is not biased.

4. Result and Discussion

Figure 4.1: Confusion matrix for performance measurement of model L1F16

The results obtained during the implementation of models proposed in Table 3.2 of Section 3 are

given in this section. The models were evaluated both on PC and on Arduino board for different

aspects during different stage of implementation.

Department of Electrical and Electronic Engineering Page 28

4.1. Model Evaluation on PC

4.1.1. Classification Performance of Proposed Models

After the building and training process, a set of TensorFlow models were obtained using the

proposed architecture configurations in Table 3.2 of Section 3, which were measured using two

metrics: overall accuracy and F1 score. Confusion matrices were plotted for each of the proposed

models.

Figure 4.1 shows the 6x6 confusion matrix for model L1F16. The overall accuracy of the model was

shown at the right bottom cell and it was calculated using (11). The precision and recall of each

class were calculated using (12) and (13), and they were shown at the lowest row and right-most

column respectively. Then, the class-wise F1 score was computed using (14), and an average F1

score of the model was recorded in Table 4.1, which summarises the measurement results and the

size of TensorFlow models.

Table 4.1: Performance and memory usage of proposed models

Model Accuracy (%) F1 score Model Size (KB)

L1F16 84.93 0.849 319

L1F32 86.73 0.865 509

L2F16 90.46 0.904 224

L2F32 92.26 0.923 395

L3F16 90.19 0.901 283

L3F32 91.18 0.911 581

L4F16 85.65 0.856 358

L4F32 89.79 0.900 797

As shown in Table 4.1, there was no big discrepancies between overall accuracy and the F1 score

of each model, meaning that the models were robust, and the dataset was balanced. Thus, the

overall accuracy could be reliably used as the metric of performance evaluation in the remaining

part of project. For models with same number of layers, the model with a greater number of filters

had better performance and bigger size. For example, L2F32 outperformed L2F16 by 1.8% in

accuracy at the cost of an increased model size of 171KB. Generally, the models with two-layer

configuration performed better and used less memory, as Figure 4.2 suggested.

Department of Electrical and Electronic Engineering Page 29

Figure 4.2: No. of Layer vs Model Size vs Model Accuracy

To evaluate further the relationship between model size and performance of two-layer models,

three additional models, L2F8, L2F64 and L2F128 were trained and tested in addition to L2F16 and

L2F32.

Figure 4.3: Effect of increasing number of filters per layer on model size

As shown in Figure 4.3, the increased complexity of a model enhanced model accuracy. However,

as filter numbers grew exponentially, the upward trend of accuracy decreased: from 32 to 64,

filters accuracy increased by 1.26% and model size increased by 606 KB, indicating that 100 KB

would bring about 0.2% of accuracy growth. However, from 64 to 128 filters, 100 KB of model size

growth only brought about a 0.025% accuracy increase. Since the two-layer models tested

Department of Electrical and Electronic Engineering Page 30

exhibited promising performance and there was a positive correlation between their performance

and size, they were brought to the next stage of implementation for further evaluation.

4.1.2. Effect of TensorFlow Lite Optimisation

TensorFlow Lite provides model optimization via conversion and quantisation. The two-layer

models were converted to the ‘.tflite’ format using the converter API, provided by TensorFlow Lite.

These TFlite models were then further optimised through quantisation techniques. The effects of

the conversion and quantisation were measured by testing the converted models. Model size and

accuracy are provided in Tables 4.2 and 4.3, respectively.

Table 4.2: Optimisation effects on the model size

TFlite
Model

Size Before
conversion (KB)

No Quantisation
Size (KB)

Float16

Size (KB)

Full integer
Size (KB)

Dynamic range
Size (KB)

L2F8 174 13 10 8 7

L2F16 224 29 18 13 12

L2F32 395 86 47 27 26

L2F64 1001 297 155 83 78

L2F128 3358 1075 554 288 279

 The conversion to the ‘.tflite’ format showed significant improvement for model size, especially for

smaller models. The size of L2F8 went from 174 KB to 13 KB, more than a 13x reduction. Less size

reduction was observed for more complex models like L2F64 and L2F128, which were reduced by

around 3x in size. The TFlite models were further compressed with quantisation techniques: TFlite

models were 1.3x to 1.9x smaller with float16 quantisation, 1.6x to 3.7x smaller with full integer

quantisation and 1.9x to 3.9x smaller with dynamic range quantisation. Notably, TFlite model size

was positively correlated to the effect of size reduction when applying quantisation.

Table 4.3: Optimisation effects on the model accuracy

TFlite
Model

Accuracy Before
conversion (%)

No Quantisation
Accuracy (%)

Float16

Accuracy (%)

Full integer
Accuracy (%)

Dynamic range
Accuracy (%)

L2F8 84.09 84.09 84.09 82.97 83.85

L2F16 90.46 90.46 90.46 90.26 90.3

L2F32 92.26 92.26 92.26 92.26 92.3

L2F64 92.94 92.94 92.94 92.53 92.84

L2F128 93.52 93.52 93.52 93.45 93.59

Department of Electrical and Electronic Engineering Page 31

According to the results in Table 4.3, model accuracy was unchanged after conversion to TFlite

model and application of float16 quantisation, while insignificant accuracy loss was observed with

full integer and dynamic range quantisation. After being quantised with a full integer scheme, L2F8,

L2F16, L2F64 and L2F128 lost 1.12%, 0.2%, 0.41% and 0.07% accuracy, respectively. Dynamic

range quantisation caused accuracy losses of 0.24%, 0.16% and 0.1% to L2F8, L2F16 and L2F64,

respectively. Intriguingly, L2F32 and L2F128 gained small accuracy improvements (0.04% and

0.07%, respectively) after dynamic range quantisation.

4.2. Model Evaluation on Device

The TFlite models from the previous section, both quantised and non-quantised, were deployed

on Arduino Board for an on-device performance evaluation. Three key aspects of on-device

implementation were evaluated: accuracy, inference latency and energy consumption.

In terms of accuracy, the PC measurement results from the previous section should have remained

valid for any target device, assuming the correct implementation. After repeated accuracy

measurements on Arduino Board, the same inference results were returned. In contrast, a model’s

latency is dependent on the target device due to different computational speeds. Latency was

measured for TFlite models before and after quantisation. Only full integer quantisation was

supported for implementation on MCUs, as other quantisation schemes would cause the board to

crash. Results of latency measurements are shown in Table 4.4.

 Table 4.4: Latency comparison between non-quantised and full integer-quantised models

TFlite Model No Quantisation Latency (𝒎𝒔) Full integer Latency (𝒎𝒔)

L2F8 82 14

L2F16 204 22

L2F32 569 46

L2F64 1782 122

L2F128 N/A 393

Only L2F8 had an average latency below 100 milliseconds, while the latency of the remaining

models far exceeded an acceptable range for real-time HAR applications. The effect of a full

integer quantisation on latency was significant, with the models’ average latency reduced by 5.9x

to 14.6x+. It was not possible to evaluate the latency reduction effect of L2F128, which was too

large to fit in the board without quantisation. High latency would invoke high energy consumption,

Department of Electrical and Electronic Engineering Page 32

which is not ideal for embedded devices. Therefore, only full integer-quantised models were

evaluated for energy consumption. Using (17), the estimated energy consumption of quantised

models was computed:

Table 4.5: Estimation of energy consumed by full integer-quantised models to run one inference

TFlite Model 𝑬𝒊𝒏𝒇 (𝝁𝑾𝒉)

L2F8 0.081

L2F16 0.127

L2F32 0.266

L2F64 0.705

L2F128 2.270

𝐸𝑖𝑛𝑓 is a critical indicator used to determine whether a specific neural network could be

reasonably implemented on embedded devices. Due to the low-power characteristic, embedded

devices exclude any power intensive application. Considering the three application settings

proposed in Table 3.5 of Section 3, the expected battery lifespan 𝑡𝑏𝑎𝑡𝑡𝑒𝑟𝑦 could be calculated using

(23).

Table 4.6: Summary of estimated energy and expected battery run-time under different settings

TFlite Model 𝒕𝒃𝒂𝒕𝒕𝒆𝒓𝒚 in S1 (h) 𝒕𝒃𝒂𝒕𝒕𝒆𝒓𝒚 in S2 (h) 𝒕𝒃𝒂𝒕𝒕𝒆𝒓𝒚 in S3 (h)

L2F8 37 111 556

L2F16 36 108 547

L2F32 33 99 523

L2F64 26 78 460

L2F128 15 45 321

According to the results in Table 4.6, even L2F128, the most computationally intensive model,

would be able to run continuously on board for at least 15 hours in S1 setting, which implies that

the run-time of the recognition system would cover the most part of the day, without the need to

recharge or replace the battery. For many real-life applications, such as elderly monitoring, the S3

setting is the most reasonable choice. The best performing model, L2F32, was estimated to have

around three weeks of run-time.

Department of Electrical and Electronic Engineering Page 33

5. Discussion and Conclusion

5.1. General Discussion

The proposed models were successfully implemented and measured on the target device, and the

relationship between model performance and computational budget was evaluated. The state-of-

the-art optimisation techniques for embedded devices were applied to the models, and the effects

were assessed. These techniques exhibited promising effects on model speedup and size

reduction at the cost of minimal accuracy loss. These techniques would enable the deployment of

more complex and accurate network on low-power devices for fast and reliable on-device

inference. Moreover, the lightest model tested in this project was only 7 KB in size, and its

accuracy was 84.09%. This implies that the lightweight deep learning methods could be

implemented on devices with an extremely low computational resource.

Another contribution of this project is the evaluation of energy consumption at different

quantisation levels and neural network complexity was measured, using which an evaluation of

battery lifespan was done to approach real-life settings. The aim of this battery lifespan evaluation

was to offer guidance for future works, which might make use of the above evaluation procedures

as reference. The application settings could vary greatly depending on the real-world

requirements, and it was impossible to provide an exhaustive list of settings. Three representative

settings were proposed and evaluated. Results from the S1 setting demonstrated that complex

neural networks are now able to meet real-life requirements. On the other hand, results from the

S3 setting proved the practicability of neural network-based HAR solutions.

5.2. Conclusion

In this project, a review of literature was conducted to aid the selection of software tools and

hardware platform for on-device implementation. A set of CNN models of different complexities

were proposed, trained and tested on PC using TensorFlow. These models achieved performance

similar to previous works, with be best performing model obtained an overall accuracy of 93.52%.

The models were then converted to a memory efficient format to be integrated into the

embedded software developed using TensorFlow Lite. The converted models showed a size

reduction of 3x to 13x, and then were deployed on Arduino board. Then the models were further

optimised and measured. Overall, quantised models achieved latency reduction for up to 14.6x,

and size reduction for up to 3.9x. The overall performance of the tested models was discussed in

Department of Electrical and Electronic Engineering Page 34

the previous section, concluding that deep learning methods for HAR on MCU are highly

practicable.

5.3. Limitations and Future Works

This project was subject to several limitations. Firstly, the models were not trained using self-

collected data. As such, even if they displayed high accuracy on the chosen dataset, it is not

possible to perform human activity recognition using the on-device models, as the data collected

by the embedded sensor are strange for the model. This limited the possibility of testing the whole

HAR system in real-life settings. Secondly, TensorFLow Lite is still in phase of development, and

LSTM operators were not fully supported.

For future works, it is recommended to work on self-collected dataset so that the overall system

could be evaluated in a comprehensive manner. In addition, with the advances in unsupervised

learning algorithms, it might be worth to investigate what could be done using unsupervised

learning.

6. References

[1] C. A. Ronao and S. B. Cho, “Human activity recognition with smartphone sensors using deep

learning neural networks,” Expert Syst. Appl., vol. 59, pp. 235–244, 2016.

[2] J. Manjarres, P. Narvaez, K. Gasser, W. Percybrooks and M. Pardo, “Physical Workload

Tracking Using Human Activity Recognition with Wearable Devices,” Sensors (Basel), 2019.

[3] L. Lai and N. Suda, "Enabling Deep Learning at the LoT Edge," 2018 IEEE/ACM International

Conference on Computer-Aided Design (ICCAD), San Diego, CA, 2018, pp. 1-6

[4] M. Mukherjee, R. Matam, C. X. Mavromoustakis, H. Jiang, G. Mastorakis and M. Guo,

"Intelligent Edge Computing: Security and Privacy Challenges," in IEEE Communications

Magazine, vol. 58, no. 9, pp. 26-31, September 2020.

[5] T. Zebin, P. J. Scully, N. Peek, A. J. Casson, and K. B. Ozanyan, “Design and Implementation of

a Convolutional Neural Network on an Edge Computing Smartphone for Human Activity

Recognition,” IEEE Access, vol. 7, pp. 133509–133520, 2019.

[6] P. -E. Novac, A. Castagnetti, A. Russo, B. Miramond, A. Pegatoquet and F. Verdier, "Toward

unsupervised Human Activity Recognition on Microcontroller Units," 2020 23rd Euromicro

Conference on Digital System Design (DSD), Kranj, Slovenia, 2020, pp. 542-550

[7] N. Oukrich “Daily Human Activity Recognition in Smart Home based on Feature Selection,

Neural Network and Load Signature of Appliances,” 2019.

[8] V. Menger, F. Scheepers and M. Spruit, “Comparing Deep Learning and Classical Machine

Learning Approaches for Predicting Inpatient Violence Incidents from Clinical Text,” Appl. Sci.

2018, 8, 981.

Department of Electrical and Electronic Engineering Page 35

[9] Z. Ghahramani, “Unsupervised Learning,” In: Bousquet O., von Luxburg U., Rätsch G. (eds)

Advanced Lectures on Machine Learning. ML 2003. Lecture Notes in Computer Science,

2004, pp. 72-112.

[10] D. Lara and M. A. Labrador, “A survey on human activity recognition using wearable

sensors,” IEEE Commun. Surv. Tutorials, vol. 15, no. 3, pp. 1192–1209, 2013.

[11] M. A. R. Ahad, J. K. Tan, H. S. Kim and S. Ishikawa, "Human activity recognition: Various

paradigms," ICCAS, pp. 1896-1901, 2008.

[12] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444,

2015.

[13] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach. Learn., vol. 2, no. 1.

2009.

[14] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of

pattern recognition unaffected by shift in position,” Biol. Cybernetics 36, pp. 193–202, 1980.

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document

recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2323, 1998.

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep

Convolutional Neural Networks,” Adv Neural Inf Process Syst, vol. 25, pp.1097-1105, 2012.

[17] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by

reducing internal covariate shift," ICML, 2015.

[18] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep captioning with multimodal

recurrent neural networks (m-rnn),” arXiv, 2014

[19] Y. Bengio, P. Simard and P. Frasconi, “Learning long-term dependencies with gradient

descent is difficult,” IEEE Trans. Neural Networks 5, pp. 157–166, 1994

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput. vol. 9,

pp.1735–1780, 1997.

[21] T. Zebin, M. Sperrin, N. Peek, and A. J. Casson, “Human activity recognition from inertial

sensor time-series using batch normalized deep LSTM recurrent networks,” Proc. Annu. Int.

Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 1–4, 2018.

[22] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge computing: Vision and challenges,” IEEE

internet of things journal, vol.3, no.5, pp. 647-646, 2016.

[23] “Edge TPU.” [Online]. Available: https://cloud.google.com/edge-tpu/

[24] “Arduino Nano 33 BLE Sense.” [Online]. Available: https://store.arduino.cc/usa/nano-33-

ble-sense

[25] “Apollo3 Blue Datasheet.” [Online]. Available:

https://cdn.sparkfun.com/assets/c/1/b/7/6/Apollo3_Blue_MCU_Data_Sheet_v0_10_0.pdf

[26] L. Lai, N. Suda and V. Chandra, “Cmsis-nn: Efficient neural network kernels for arm cortex-m

cpus,” arXiv, 2018.(26)

[27] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks for mobile vision

applications,” arXiv , 2017.

[28] D. Lin, S. Talathi and S. Annapureddy, "Fixed point quantization of deep convolutional

networks", ICML, pp. 2849-2858, 2016.

[29] R. Banner, Y. Nahshan, E. Hoffer and D. Soudry, “Post-training 4-bit quantization of

convolution networks for rapid-deployment,” arXiv, 2018.

https://cloud.google.com/edge-tpu/
https://store.arduino.cc/usa/nano-33-ble-sense
https://store.arduino.cc/usa/nano-33-ble-sense
https://cdn.sparkfun.com/assets/c/1/b/7/6/Apollo3_Blue_MCU_Data_Sheet_v0_10_0.pdf

Department of Electrical and Electronic Engineering Page 36

[30] S. Gupta, A. Agrawal, K. Gopalakrishnan and P. Narayanan, “Deep learning with limited

numerical precision,” ICML, 2015. PMLR.

[31] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam and D. Kalenichenko,

“Quantization and training of neural networks for efficient integer-arithmetic-only

inference.” Proc. IEEE CVPR, pp. 2704-2713, 2018.

[32] “Tensorflow Lite.”[Online]. Available: https://www.tensorflow.org/lite/guide

[33] PyTorch Mobile, 2021 [online] Available: https://pytorch.org/mobile/home/

[34] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous distributed

systems,” CoRR, vol. abs/1603.04467, pp. 1–19, 2016

[35] R. David et al., “Tensorflow lite micro: Embedded machine learning on tinyml systems,” arXiv,

2020.

[36] “Embedded Learning Library.” [Online]. Available https://microsoft.github.io/ELL/

[37] “STM32 solutions for Artificial Neural Network.” [Online]. Available:

https://www.st.com/content/st_com/en/ecosystems/stm32-ann.html

[38] L. Bao, and S. S. Intille, “Activity recognition from user-annotated acceleration data,” ICPCA,

2004.

[39] U. Maurer, A. Smailagic, D. P. Siewiorek and M. Deisher, “Activity recognition and monitoring

using multiple sensors on different body positions,” IWWIBSN (BSN'06). IEEE, 2006.

[40] C. Zhu and W. Sheng, “Human daily activity recognition in robot-assisted living using multi-

sensor fusion,” ICRA, pp. 2154-2159, IEEE, 2009.

[41] F. J. Ordóñez and D. Roggen, “Deep convolutional and LSTM recurrent neural networks for

multimodal wearable activity recognition,” Sensors (Switzerland), vol. 16, no. 1, 2016.

[42] Y. Zhang, N. Suda, L. Lai and V. Chandra, “Hello edge: Keyword spotting on microcontrollers,”,

2017.

[43] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu and Y. Liu, “Deep learning for sensor-based human

activity recognition: overview, challenges and opportunities,” arXiv, 2020.

[44] H. F. Nweke, Y. W. Teh, M. A. Al-Garadi and U. R. Alo, “Deep learning algorithms for human

activity recognition using mobile and wearable sensor networks: State of the art and

research challenges”. Expert Syst. Appl., v.105, pp. 233-261, 2018.

[45] J. Chen and X. Ran, “Deep Learning With Edge Computing: A Review,” Proc. IEEE vol.107,

no.5, pp.1655-1674, 2019

[46] R. Chavarriaga et al., "The Opportunity challenge: A benchmark database for on-body

sensor-based activity recognition," Pattern Recognit. Lett., vol. 34, no. 15, pp. 2033-2042,

2009.

[47] A. Reiss and D. Stricker, "Introducing a new benchmarked dataset for activity

monitoring," Proc. 16th Int. Symp. Wearable Comput., pp. 108-109, 2012.

[48] G. M. Weiss, K. Yoneda and T. Hayajneh, "Smartphone and Smartwatch-Based Biometrics

Using Activities of Daily Living," in IEEE Access, vol. 7, pp. 133190-133202, 2019.

[49] D. Anguita, A. Ghio, L. Oneto, X. Parra and J. L. Reyes-Ortiz, “A public domain dataset for

human activity recognition using smartphones,” In Esann, vol. 3, p. 3.

[50] N. Y. Hammerla, S. Halloran, and T. Plötz, “Deep, convolutional, and recurrent models for

human activity recognition using wearables,” IJCAI Int. Jt. Conf. Artif. Intell., vol. 2016-Janua,

pp. 1533–1540, 2016.

https://www.tensorflow.org/lite/guide
https://pytorch.org/mobile/home/
https://microsoft.github.io/ELL/
https://www.st.com/content/st_com/en/ecosystems/stm32-ann.html

Department of Electrical and Electronic Engineering Page 37

[51] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” ICLR, 2015

[52] “Language Reference.” [Online]. Available: https://www.arduino.cc/reference/en/

[53] “nRF52840 Product Specification.” [Online]. Available:

https://content.arduino.cc/assets/Nano_BLE_MCU-nRF52840_PS_v1.1.pdf

https://www.arduino.cc/reference/en/
https://content.arduino.cc/assets/Nano_BLE_MCU-nRF52840_PS_v1.1.pdf

Department of Electrical and Electronic Engineering Page 38

7. Appendices

7.1. Appendix 1 – Code

All code used during this project can be found in the following GitHub repository:

https://github.com/laiwenq/CNN_on_Arduino_Nano

The repository contains: 1) Python code used to pre-process dataset, build, train and test model

on PC; 2) Scripts used to communicate with Arduino board via USB; 3) Embedded software

developed for Arduino board to run inference, return inference result and latency.

7.2. Appendix 2 – Covid19 statement

Ideally, a laboratory power analyser should be used to measure the electrical quantities required

for the energy evaluation. Unfortunately, due to the ongoing circumstance and export control, this

was not possible. Therefore, an alternative approach was to look at the product specification. This

document provided electrical specification for every possible scenario, which could be used in the

estimation. This approach of might not be very accurate, but it guarantees that the estimation will

not diverge too much from the true value.

https://github.com/laiwenq/CNN_on_Arduino_Nano

	Abstract
	1. Introduction
	1.1. Motivation
	1.2. Aim & Objectives
	1.3. Report Structure

	2. Literature Review
	2.1. Machine Learning for Human Activity Recognition
	2.2. Deep Learning Methods
	2.2.1. Convolutional Neural Network: Evolution of Architectures
	2.2.2. Recurrent Neural Networks: Long Short-Term Memory

	2.3. Edge Machine Learning
	2.3.1. Overview of AI accelerators
	2.3.2. Optimisation for Deployment on Edge
	2.3.3. Frameworks for Model Development

	2.4. Related Works

	3. Methods
	3.1. Dataset Selection
	3.2. Dataset Description & Pre-Processing
	3.3. Proposed Model Architectures
	3.4. Model Training, Conversion and Optimisation
	3.5. Model Deployment & Measurement setup
	3.5.1. Classification Performance
	3.5.2. Latency and Energy Consumption
	3.5.3. Memory Usage

	4. Result and Discussion
	4.1. Model Evaluation on PC
	4.1.1. Classification Performance of Proposed Models
	4.1.2. Effect of TensorFlow Lite Optimisation

	4.2. Model Evaluation on Device

	5. Discussion and Conclusion
	5.1. General Discussion
	5.2. Conclusion
	5.3. Limitations and Future Works

	6. References
	7. Appendices
	7.1. Appendix 1 – Code
	7.2. Appendix 2 – Covid19 statement

