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Abstract 

With advances in chip technology and edge computing, deep learning methods for Human Activity 

Recognition have been deployed on various devices, outperforming conventional machine 

learning methods. Microcontroller units are ideal candidates for deep learning model deployment, 

as they usually contain one or more sensors, making them ideal for the deep learning model to 

perform classification. This on-device classification guarantees the privacy of users. However, 

neural network-based methods are computationally heavy, for which their integration into 

microcontroller units have not yet been evaluated comprehensively. With the recent 

improvements in neural network optimisation techniques, there is an increased demand to 

leverage these techniques to implement deep learning models on microcontroller units. In this 

project, a set of models based on convolutional neural network architecture were trained and 

assessed in terms of accuracy, latency, memory usage and power consumption. Models were 

trained using TensorFlow 2 library, while TensorFlow Lite library was used for model conversion, 

optimisation and deployment on the Arduino Nano 33 BLE board. From the measurement, the 

quantised models were up to 14.6x faster and 3.9x more memory efficient compared to non-

quantised models. Such optimisation results ensured the feasible implementation of deep learning 

models on low-power microcontroller units for fast on-device inference.  
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1. Introduction 

1.1. Motivation 

Connected embedded devices, collectively referred to as the Internet of Things (IoT), are pervasive 

in people’s daily lives. The omnipresence of microcontroller units (MCUs) with embedded sensors 

such as accelerometers and gyroscopes has created an ideal environment for the mass collection 

of raw data [1]. Currently, MCU sensor data is transmitted to a cloud server for processing, which 

then enables numerous applications in various domains, from healthcare to smart homes [2]. 

However, this transmission often requires a stable internet connection, which adds latency to the 

transmission’s overall execution. One solution to this issue is performing the task at the data’s 

source, also known as edge computing. Edge computing reduces transmission latency and saves 

network bandwidth, enhancing performance in areas with limited internet connection [3]. 

Moreover, edge computing prevents the unauthorised exploitation of user data [4]. 

MCUs have limited memory capacity, ranging from tens to a few hundred kilobytes, and poor 

computing capability which has made them inadequate for use as deployable targets for deep 

learning [3]. However, recent optimisation advancements have now made on-device 

implementation of deep learning models possible. A deep learning model implemented on edge 

computing MCUs might overcome the limitations of cloud-based transmission and carry further 

benefits such as rapid real-time inference and low-power usage. This would accelerate 

development of data-driven applications in various areas [1]. 

Deep learning methods are highly proficient at solving complex classification problems, and deep 

learning architectures such as Recurrent Neural Networks (RNNs) and Convolutional Neural 

Networks (CNNs) exploit the sequential, hierarchical nature of sensor data to perform 

classification tasks. Deep learning models therefore can extract abstract features automatically, 

without human intervention, and reduce time spent on data pre-processing [2]. Human Activity 

Recognition (HAR), a task that classifies a user’s ongoing physical activity based on time-series 

sensor data, is a significant deep learning use case [5]. HAR is used in various critical applications 

such as chronic disease management, ambient assisted living and physical workload tracking 

[6],[7]. HAR applications have traditionally used conventional machine learning classifiers such as 

Support Vector Machine (SVM), Decision Trees and Naïve Bayes (NB). These classifiers are unable 

to process raw data and therefore require manual feature extraction, leading to reduced accuracy 

and problems with overfitting [7]. A recent work, however, suggests that deep learning models 
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perform better than conventional methods in classification task when trained with a large dataset 

[8]. As such, deep learning models implemented on MCUs have become the most promising 

solution for HAR issues. For real-world applicability, however, many aspects must be considered 

besides prediction accuracy, such as latency and power and memory consumption.  

1.2. Aim & Objectives 

Given recent advancements in optimising neural networks and an increased demand for applying 

on-device neural network-based solutions to real-life scenarios, this project aims to implement 

deep learning models for HAR on a MCU then evaluate the relationship between on-device 

performance and overhead. An evaluation of real-life implementation will then be provided.  

The following objectives must be met to accomplish this research project’s aim:  

1) Conduct a literature review of related research focusing on methods used for HAR tasks. 

2) Identify state-of-the-art deep learning methods for HAR, selecting a suitable model 

architecture. 

3) Select an off-the-shelf AI accelerator MCU to be the target device, justifying its selection. 

4) Select an open-source machine learning framework to train models and run inference on MCU. 

5) Implement the selected model architecture with different configurations to obtain a set of 

trained models to be evaluated. 

6) Develop an embedded software to feed accelerometer data to the model, run inference and 

return inference results. 

7) Convert and optimise models to suit the MCU, using the selected framework. 

8) Deploy and run the models on the selected MCU and record their performances in terms of 

accuracy, latency, power consumption and memory usage. 

9) Discuss the overall performance and the practicability of on-device deep learning for HAR. 

1.3. Report Structure 

The contents of this report are arranged as follows. Section 2 is a literature review of popular deep 

learning methods with relevant background knowledge; information on the constraints and 

methods for deployment on MCUs will also be explored. Section 3 introduces the selected dataset, 

target device and proposed model architecture with different configurations; details on the model 

design, testing and deployment will be provided. Section 4 presents the performance results of all 

tested models analyses these findings. Section 5 gives a general discussion about the project and 
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draws conclusions concerning the overall practicability and limitations of on-device deep learning 

methods for HAR. The Conclusion contains recommendations for future study. 

2. Literature Review 

2.1. Machine Learning for Human Activity Recognition 

Given the technological advancements and accompanying behavioural changes made over the last 

two decades, the amount of data in circulation has grown exponentially. Human intelligence is 

often incapable of understanding this data, so machine learning, a rapidly growing subset of the 

field of artificial intelligence (AI), may offer a way to make this data more accessible to human use.  

Machine learning refers to methods which allow machines to learn automatically from input data 

by identifying inherent statistical patterns and making evidence-based decisions on newly input 

data, all without human intervention.  

Machine learning algorithms are divided into three paradigms: supervised learning, unsupervised 

learning and reinforcement learning. Supervised learning refers to a model trained with a labelled 

dataset consisting of pairs of input and desired output data [9]. Supervised learning methods have 

been successfully adopted for solving classification and regression tasks. In contrast, unsupervised 

learning uses an unlabelled training dataset, instead relying on grouping output data with 

common attributes into clusters. Finally, reinforcement learning algorithms rely on a closed-loop 

feedback scheme in which the algorithm’s interactions with the environment produce qualitative 

feedback that provides either rewards or punishments. The ultimate goal of the feedback scheme 

is to maximise the reward, or minimise the punishment, received [9]. 

Human Activity Recognition (HAR) has been an active research field for the past two decades and 

is crucial to many prominent applications in various critical domains such as healthcare, human-

centred computing and ambient assisted living [10]. HAR is used to classify people’s ongoing 

physical activity using sensor data from an individual’s environmental or body-worn sensors. As 

such, supervised machine learning algorithms are potentially ideally suited to HAR fields. While 

traditional machine learning algorithms used for classification tasks, such as Decision Trees (DT), 

Bayesian Network (BN), Support Vector Machine (SVM) and K-Nearest Neighbour (K-NN), have 

demonstrated relatively high accuracy in predicting human activities [10], they can hardly be 

implemented in a real world context because they learn from data described by shallow manual 

techniques [11]. In contrast, representation learning (or feature learning) methods may streamline 
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raw data transmission by extracting abstract features automatically [12]. 

2.2. Deep Learning Methods 

Deep learning methods are forms of representation learning whose bioinspired hierarchical 

architecture enables the automatic extraction of complex and abstract features. Deep learning 

architectures consist of multiple stacked non-linear layers, each represented by numerous 

neurons with weighted connections, associated bias term and activation function. In gradient-

based deep learning models, a backpropagation algorithm automatically tunes the weights and 

optimises the objective function to evaluate a model’s performance. Thus, the objective function 

(often referred to as a “loss function”) measures the error between predictions and desired 

outputs. In a stacked deep learning model, each layer is capable of transforming a previous layer’s 

input into representation with a greater level of abstraction. This transformative process repeats 

throughout all intermediate, or hidden, layers until reaching the output layer, where the final 

outputs are represented in a human-understandable result [13].  

Deep learning methods have clear advantages when compared to more conventional methods of 

extracting raw data, especially for HAR. Manual data collection tasks generally have lengthy 

durations, ranging from tens of seconds to a few minutes, which is reduced with deep learning 

methods. Meaningful predictions of ongoing activity for HAR require an analysis of sensor data 

using fixed-length time windows, which may be interrupted by manual data collection [10]. Deep 

learning methods, therefore, have been widely applied to HAR classification tasks. Typical neural 

network methods used for HAR include Convolutional Neural Network (CNN) and Recurrent 

Neural Network (RNN), both of which exploit spatial and temporal information from time series 

data. 

2.2.1. Convolutional Neural Network: Evolution of Architectures 

The first CNN architecture for pattern recognition, called Neocognitron, was developed by 

Kunihiko Fukushima in 1980 [14]. The main drawback to this architecture was its lack of a 

supervised learning algorithm (for example, an error backpropagation algorithm). In 1989, Yann 

LeCun proposed a series of new architectures, called LeNet, to improve these early CNN 

weaknesses. The latest version of LeNet, LeNet-5, has been trained with a backpropagation 

algorithm maintaining concepts similar to Neocognitron: local connectivity, shared weights and 

down-sampling. Figure 2.1 illustrates LeNet-5’s architecture for digits recognition [15]. 
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Figure 2.1: LeNet-5 for digits recognition [15] 

LeNet-5 has two central building blocks, convolutional layers (C1 and C3) and down-sampling 

layers (S2 and S4), which are followed by two fully-connected layers (C5 and F6) and a final output 

layer. 

 In a convolutional layer, each unit is connected to a fixed-size local patch of a previous layer’s 

output through a vector of weights called filter, comprising a set of trainable parameters. The 

collection of such units forms a feature map. One layer may contain multiple filters, each 

producing a feature map by computing dot product with input data. These feature maps then pass 

through a 𝑡𝑎𝑛ℎ activation function, adding non-linearity to the output: 

𝑓(𝑥) = tanh(𝑥) =
𝑒𝑥−𝑒−𝑥

𝑒𝑥+𝑒−𝑥
      (1) 

All units within a feature map share the same filter bank, and there may be multiple filter banks 

producing an equal number of feature maps within one layer.  

In a down-sampling layer, also called a Max-Pooling layer, each unit covers a patch of the previous 

layer, through which several features are merged into a single feature by taking the local patch’s 

maximum value. Advantages of Max-Pooling layers include reduced input size for the next layer, 

reduced computational cost and increased tolerance to small positional changes.  

Actual classification is done in the last three layers. Each C5 neuron is connected to all the feature 

maps from S4, forming a vector of 120 units. F6 is fully connected to C5, which narrows the vector 

dimension to 84. The output layer uses a Euclidean RBF classifier to perform its final classification 

[15].  

LeNet-5 has been more successful than other conventional methods in recognising patterns of 

small-scale images (32 x 32 pixels) [15]. However, it also suffered from various limitations, 
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including long training time and heavy computational overhead for large-scale image recognition 

tasks.  

Consequently, CNN architectures were generally ignored by the computer vision community until 

2012, when the ground-breaking CNN architecture AlexNet overcame these drawbacks and won 

the ImageNet Large Scale Visual Recognition Challenge (ILSVRC) 2012 [16]. AlexNet classified 1.2 

million large scale images with a top-5 error rate of 15.3%, far lower than any competing methods.  

AlexNet is a variant of LeNet that contains an increased number of layers and filters per layer, 

resulting in around 60 million trainable parameters (around 1000 times more than LeNet-5). Such 

a huge network was made possible with the implementation of several new features, such as 

dropout regularisation technique, ReLu activation functions and hardware accelerators. Dropout 

regularisation techniques are used in the last two fully-connected layers and reduce overfitting by 

randomly setting the output of a certain percentage of neurons to zero for each input batch so 

that these neurons will not participate in training.  ReLu, an abbreviation of Rectified Linear Unit, is 

mathematically simpler than 𝑡𝑎𝑛ℎ used in LeNet.  

𝑓(𝑥) = max(0, 𝑥)                                                                     (2)  

(2) prevents gradients from approaching zero during backpropagation since its derivative is 1 even 

for large 𝑥. Finally, AlexNet is trained on two graphics processing units (GPUs) optimised to 

accelerate the calculation of 2D convolution. AlexNet initially used a normalisation layer, Local 

Response Normalisation (LRN), to aid with generalisation, but this layer has recently been replaced 

by a more effective layer named Batch Normalisation (BN). BN enhances generalisation and 

reduces training time by normalising an input batch’s internal distribution [17].  

The general structure and features of LeNet and AlexNet are used widely in computer research 

and applications. For multi-class classification problems, the softmax function is generally used in 

the output layer to map each class’s output scores into a numerical vector, ranging from 0 to 1 and 

summing to 1, which represents its probabilities. 

2.2.2. Recurrent Neural Networks: Long Short-Term Memory 

Although the first RNN architecture was introduced by John Hopfield in 1982, it has gained 

widespread attention only in the last two decades thanks to increased computational power and 

advancements to RNN architecture. RNNs demonstrate outstanding performance in various tasks 
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with sequential input data, such as natural language processing, as their architecture allows them 

to exploit temporal correlations in input sequences [18].  

Figure 2.2 illustrates a simple RNN and its unfolded workflow. For forward computations, current 

input 𝑥𝑡 and past state 𝑠𝑡−1 determine the current state 𝑠𝑡 of neurons in the hidden layer, upon 

which output 𝑜𝑡 is dependent (𝑡 indicates discrete time step). The matrices U, V and W contain 

parameters used for forward computation, which can be updated using backpropagation [12]. 

 

Figure 2.2: Architecture of a simple unidirectional RNN [12] 

Training RNNs was initially challenging, for gradients in long sequences either explode or vanish 

during backpropagation [19]. In 1997, Sepp Hochreiter and Jürgen Schmidhuber overcame these 

issues with Long Short-Term Memory network (LSTM), a variant of RNN. LSTM introduced a special 

unit, the memory cell, which retained long-term memory. Figure 2.2 illustrates the structure of a 

typical memory cell, which uses three internal gates to control the flow of information [12]. The 

forget gate, 𝑓𝑡, controls what information taken from the previous step’s memory cell time step, 

𝑐𝑡−1, should be kept in the current memory cell, 𝑐𝑡. The input gate, 𝑖𝑡, controls how much of the 

new input data should flow into 𝑐𝑡. The output gate, 𝑜𝑡, controls how much information from 𝑐𝑡 

should flow into hidden state, ℎ𝑡.  

 

Figure 2.3: Memory cell structure [21] 
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As described by Figure 2.3, all three gates are multiplicative and attached to a sigmoid (𝜎) 

activation function with an output ranging from 0 to 1: 

𝜎(𝑥) =
1

 1 + 𝑒−𝑥                                                               (3) 

The mathematical formulae for the three gates are as follows: 

𝑓𝑡 = 𝜎(𝑊𝑓 ∙ [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑓)                                                   (4) 

𝑖𝑡 = 𝜎(𝑊𝑖 ∙ [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑖)                                                    (5) 

𝑜𝑡 = 𝜎(𝑊𝑜 ∙ [ℎ𝑡−1, 𝑥𝑡]  +  𝑏𝑜)                                                   (6) 

[𝑊𝑓, 𝑊𝑖 , 𝑊𝑜] and [𝑏𝑓 , 𝑏𝑖 , 𝑏𝑜] are the weights and biases of the forget, input and output gates, 

respectively. Note that the candidate memory cell, 𝐶̃𝑡, which participates in updating the current 

memory cell’s information, has its own associated weight and bias: 

𝐶̃𝑡 = tanh (𝑊𝑐 ∙ [ℎ𝑡−1, 𝑥𝑡]  + 𝑏𝑐)                               (7) 

The output value of the candidate memory cell lies between -1 and 1, as its activation function is 

(1). Finally, (4), (5) and (7) may be used to update the memory cell: 

 𝑐𝑡 = 𝑓𝑡 ∘ 𝑐𝑡−1 +  𝑖𝑡 ∘ 𝐶̃𝑡            (8) 

Note that new information received from the input gate and candidate memory cell is linearly 

accumulated in the current memory cell. Using (6) and (8), the hidden state of the current memory 

cell is calculated as follows: 

ℎ𝑡 = 𝑜𝑡 ∘ tanh (𝑐𝑡)           (9) 

As with CNNs, stacked-LSTMs use LSTM layers to extract features from raw data, while actual 

recognition tasks are performed by multiple fully-connected layers.  

2.3. Edge Machine Learning 

The proliferation of the IoT and increased capability of edge devices has created a new computing 

paradigm known as edge computing. In contrast to cloud computing, edge computing performs 

computations directly at data sources. Edge computing particularly improves applications 

requiring real-time responses and/or data privacy, as no data transmission is needed outside the 



Department of Electrical and Electronic Engineering Page 10 

edge device [22]. HAR is an ideal task for edge computing, as a user’s privacy may be undermined 

if the personal data required for recognition is transmitted to a third party. Moreover, deep 

learning methods are ideal candidates for HAR tasks, since they learn directly from raw data 

generated by embedded sensors. However, implementing deep learning models on edge devices 

is challenging, as these models are relatively large and complex for resource-constrained edge 

devices, especially MCUs. These problems can be addressed by optimising either the device’s 

performance or neural network architecture.  

2.3.1. Overview of AI accelerators 

Different hardware manufacturers are currently producing AI accelerators to enhance deep 

learning-based tasks from the hardware perspective. These accelerators are based on GPUs, field-

programmable gate arrays (FPGAs) and application-specific integrated circuits (ASICs), which allow 

more efficient computation than generic CPUs. In recent years,  vendors have begun developing AI 

accelerators for edge implementation. For example, the Coral Dev Board by Google is a single-

board computer with Tensor Processing Unit (TPU), an ASIC designed by Google itself [23]. These 

devices, however, are not yet popular, and their cost is relatively high when compared with typical 

embedded processors.  

Current off-the-shelf chips are often leveraged to develop supporting software kernels for AI 

acceleration. For example, Arm Cortex-M series processors can now accelerate common neural 

networks by leveraging kernels that accelerate typical neural network layers (see details in section 

2.3.2). Hardware manufacturers such as Arduino and Sparkfun Electronics have developed MCUs 

for deep learning-based tasks using Arm Cortex-M processors.  

   

Figure 2.4: Arduino Nano 33 BLE Sense (left) and SparkFun Edge Development Board (right) [24][25] 

Arduino Nano 33 BLE Sense is an Arduino product designed for AI acceleration. The board is based 

on the nRF52840 MCU, with a 32-bit Arm Cortex-M4F processor with 64MHz clock speed [24]. The 

board features a direct memory access module (DMA) and an inertial memory unit (IMU) 
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consisting of one 3D accelerometer, one 3D gyroscope and one 3D magnetometer. The board’s 

size (45𝑚𝑚 ×  18𝑚𝑚) and weight (5g) are ideal for unobtrusive applications. In addition to its 

IMU, the Arduino Nano has a variety of embedded sensors such as a microphone, pressure sensor 

and temperature sensor. These sensors provide abundant data used for a variety of neural 

network-based applications. Additionally, a power management unit (PMU) allows one to 

automatically switch between different operational modes to achieve the lowest power 

consumption. 

The SparkFun Edge development board is a counterpart to the Arduino Nano, manufactured by 

SparkFun Electronics. The board is based on the Apollo3 Blue MCU, which also has an Arm Cortex-

M4F processor. The nominal CPU clock frequency is 48MHz, which can be doubled in burst mode. 

SparkFun Egde features an ultra-low power MCU, consuming 6𝜇𝐴 per MHz when running and only 

1𝜇𝐴 when asleep [25]. The board contains one 3D accelerometer, one microphone and a camera 

connector.  

There are many other off-the-shelf MCUs that share similar features and constraints, such as the 

STM32F746, Adafruit EdgeBadge, Espressif ESP-32 etc. Comparison of these MCUs is beyond the 

scope of this project. 

2.3.2. Optimisation for Deployment on Edge  

Edge device optimisation is achieved by developing specific low-level computation kernels for 

generic processors to speed up common operations in neural networks. For example, Arm Cortex-

M CPUs have a set of kernels, CMSIS-NN, designed specifically to enhance performance and 

reduce memory footprint when running neural networks [26]. The general structure of a CMSIS-

NN neural network kernel shown in Figure 2.5: 

 

Figure 2.5: General structure of a neural network kernel in CMSIS-NN [26] 
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The kernel consists of NNFunctions and NNSupportFunctions. NNFunctions are designed to 

implement common neural network operations such as convolution and max pooling, while 

NNSupportFunctions complement NNFunctions with utilities such as data type conversions. 

According to [26], CMSIS-NN increases the throughput and energy efficiency of neural networks by 

4.6x and 4.9x, respectively.  

Neural network optimisation is currently an active research topic. Howard et al. [27] have recently 

proposed a parameter-efficient CNN architecture, MobileNet, for use in embedded applications. 

MobileNet utilises a new technique called depthwise separable convolution, which splits standard 

convolution into two distinct operations, depthwise convolution and pointwise convolution.  

              

Figure 2.6: Depthwise convolutional filters [27]        Figure 2.7: Pointwise convolutional filters [27] 

In a depthwise convolution layer for M input channels, each input channel is convolved using a 

single filter sized 𝐷𝑘 × 𝐷𝑘, producing M feature maps. The output of depthwise convolutions is 

combined in the pointwise convolution layer by applying N filters sized 1 × 1 ×  𝑀, where N is the 

number of output channels. Such architecture has been shown to significantly reduce computation 

and model size with minimal impact on accuracy [27]. 

Another active research direction is the precision reduction of neural networks, also known as 

quantisation. Generally, deep-learning model parameters are trained using 32-bit floating-point 

data representation. Studies demonstrate that low-precision fixed-point data representation 

achieves similar performance to benchmark results [28]-[30]. Quantisation may be applied during 

training, known as quantisation-aware training, or afterwards, known as post-training quantisation. 

Quantisation-aware training requires a consistent procedure from design phase to 

implementation phase [28],[31], while post-training quantisation converts pre-trained floating-

point models to fixed-point models.  

Jacob et al. [31] have proposed a quantisation scheme, Integer-arithmetic-only inference 

quantisation, which allows performing inference with 8-bit integer input, output, weights and 

activations; only the bias vector is in 32-bit integer format. Figure 2.8 provides an illustration of 
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this scheme.  

 

Figure 2.8: Integer-arithmetic-only quantisation [31] 

2.3.3. Frameworks for Model Development 

There are various open-source machine learning frameworks for the development of deep 

learning models, including Caffe, Caffe2, PyTorch, Keras and TensorFlow. Caffe2 has recently 

merged with PyTorch, while Keras has been integrated into TensorFlow 2.0. For edge 

implementation, TensorFLow and PyTorch offer lightweight solutions, namely TensorFlow Lite and 

PyTorch Mobile [32],[33]; the latter, however, does not support embedded systems without file 

systems. 

TensorFlow was released by Google in 2015, aiming to facilitate the development process of large-

scale machine learning models [34]. The libraries come in the form of Python libraries to provide 

high-level abstraction, but the kernels are written in C++ for better performance. TensorFlow 

supports a wide range of target devices, including generic processors, as well as edge devices. 

With the integration of Keras library into TensorFlow 2.0 released in 2019, the development 

process became even easier. TensorFlow Lite is the framework released by Google to provide 

support for model conversion and optimization for edge devices, e.g., conversion and optimization 

APIs [32].  For resource constrained MCUs, Google offered TensorFlow Lite for Microcontroller 

(TLFM), which is the state-of-the-art open-source framework for running inference on MCUs. 

TLFM uses a unique approach based on an interpreter that simulates and live neural network 

model. The interpreter-based approach increases portability and flexibility [35]. Other frameworks 

for inference on embedded devices include: the open-source Embedded Learning Library (ELL) by 

Microsoft [36], which is a cross-compiler that generate machine code to run on the device; 

STM32Cube.AI, which could convert and optmise the pre-trained model for STM32-series MCUs 

[37]. 
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2.4. Related Works  

There have been many research and works being conducted to evaluate the on-device 

performance of deep learning methods. This review of literature aimed to identify the state-of-

the-art methods for HAR and aid the model architecture selection. Besides, previous works with 

similar research scope were also reviewed to help design the testing process. 

[38]-[40] are early works conducted using classical machine learning algorithms, such as Decision 

tree, Naïve Bayes, K-Nearest Neighbors and Hidden Markov Models. Despite that high 

classification performance were achieved, these conventional algorithms suffered from a common 

drawback, as these algorithms only learn from data described by manually engineered features. 

Since the success of AlexNet in 2012, there have been a rise in the number of research using CNN 

architecture. Ronao and Cho [1] proposed a multi-layer CNN architecture with the attempt to 

apply convolutional kernels along the time axis. The proposed model showed the capability of 

exploiting the temporal correlation between time series data, achieving an overall accuracy of 

94.79%. Ordonez and Roggen [41] proposed a classifier architecture consisting of Deep CNN 

(DCNN) and LSTM, achieving F1 scores of 0.93 and 0.958. F1 score is described later (section 3.5.1). 

This classifier worked by applying convolutional kernels to the input sensor signal image to extract 

abstract features and use LSTM to extract temporal dependencies in the feature maps. In a more 

recent work by Zebin et al. [5], a stacked CNN model was proposed, which obtained an accuracy of 

96.4%. The effect of quantisation was evaluated in this work, which achieved 4x+ mode size 

reduction.  

Zhang et al. [42] investigated the performance of various neural networks by deploying them on 

MCUs. This work evaluated the on-device performance by setting out three memory constraints. 

The model accuracy was measured under each of the constraint. The best performing model 

architecture was depthwise separable convolutional neural network (DS - CNN), which obtained 

94.4% accuracy. Novac et al. [6] conducted a similar research on the relationship between the 

performance and memory usage of on-device deep learning model. This work compared the 

performance of supervised learning, unsupervised learning and semi-supervised learning 

algorithms. This work achieved an accuracy of 92.88% for supervised learning (CNN) and 84% for 

unsupervised learning (Self Organising Map). This work attempted to evaluate the models using 

battery run-time as a metric. A 19 hour batter run-time was reported for its best performing 

supervised model. A detailed review of other deep learning related works is available in [43]-[45]. 
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3. Methods 

In this section, the experimental method for on-device HAR performance evaluation is described in 

detail. Figure 3.1 is a flowchart illustrating the key experimental procedures. Python 3.8 and its 

built-in third-party libraries were used to pre-process the dataset, while TensorFlow 2.3.1, 

available as a Python library, was the framework used to train the model. The APIs from 

TensorFlow Lite were used for model conversion and optimisation.  

The embedded device used for evaluation was Arduino board, which is highly compatible with 

TensorFlow Lite. TFLM, available as an Arduino library, was used for on-device inference. Arduino 

IDE and its built-in helper functions were used to develop the embedded software. Details of the 

experimental procedures are given in the following sub-sections. All code used in this project 

could be found in the GitHub repository link in Appendix A1. 

                     

Figure 3.1: Experimental procedures for on-device performance evaluation 

3.1. Dataset Selection 

The dataset used to train a model determines its functionality and performance, and it is ideal to 

train a model using a dataset produced specifically for that model’s requirements. Unfortunately, 

collecting and processing a large amount of raw data is usually costly, and due to this project 

constraints, a public dataset for HAR was selected for training and testing purposes. Several 

datasets, including Opportunity [46], Pamap2 [47], WISDM [48] and the dataset donated by 
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Anguita et al.  (referred to as UCI-HAR dataset hereinafter) [49], were available on the UCI 

Machine Learning Repository. 

The desired dataset had several important requirements. Since the goal of this project was to 

perform HAR on a body-worn device, the dataset had to originate from unobtrusive wearable 

devices with embedded sensors. The dataset also had to be balanced in terms of sensor quantity 

and activity types. A high number of sensors provide great amounts of data from which to learn, 

improving classification accuracy. However, some datasets have an excessive number of sensors 

for training a model meant to be implemented on devices with a limited amount of sensors. 

Therefore, the Opportunity dataset, which contains five sensors, was excluded. Moreover, 

datasets Pamap2 and WISDM dataset were also excluded due to having too many activities types, 

which could lead to inefficient classification [5]. Ultimately, the UCI-HAR dataset was selected for 

training and testing because it collected data from only two sensors, an accelerometer and a 

gyroscope, which was then classified into six basic daily activities.  

3.2. Dataset Description & Pre-Processing 

Data from a UCI-HAR dataset was collected from a group of 30 subjects wearing a smartphone 

(Samsung Galaxy S II) on their waist. The accelerometer and gyroscope, embedded in the 

smartphone, sample the triaxial total acceleration and triaxial angular velocity at a constant rate of 

50 Hz. The body’s estimated acceleration was obtained using a Butterworth low-pass filter with 

0.3 Hz cut-off frequency, eliminating the low frequency gravitational component of total 

acceleration. Both total acceleration and estimated body acceleration were recorded in gravity 

unit ‘g’ (equivalent to 9.80665 𝑚/𝑠2), while angular velocity was measured in 𝑟𝑎𝑑/𝑠. Each axis 

corresponds to one input channel, so the three triaxial measurements give nine channels. Time 

series data from each channel is segmented into fixed-width sliding-windows (128 

samples/window), with a 50% overlap. The dataset classifies six activity types which are associated 

with numbers ranging from 1 to 6, as shown in Table 3.1.  

Table 3.1: Activity types and their associated number 

Activity type Walking Walking 
upstairs 

Walking 
downstairs 

Sitting Standing Lying 

Activity number 1 2 3 4 5 6 

The dataset contains 10,299 labelled activities and was split into a training set and a test set, 
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accounting for 70% and 30% respectively. A 20% samples in training set was hold as validation set, 

which were used during training. The test set was used for post-training model evaluation. Before 

starting the training process, the dataset has to be pre-processed by applying the following 

methods: 

1) Scaling: All values in the dataset are scaled to lie within a small range of value, in order to 

accelerate computation and avoid training bias caused by large outliers in the dataset. Scaling 

is accomplished using the “MinMaxScaler” function from Python Library’s scikit-learn class. 

This function acts as a scaler for each input channel, normalising all values into a predefined 

range according to the channel’s minimum and maximum numbers. The selected range is [-1, 

1], since the dataset contains negative values. Scaling is represented by the following function: 

𝑥𝑠𝑐𝑎𝑙𝑒𝑑 (𝑥) =
(𝑥−𝑥𝑚𝑖𝑛)(𝑚𝑎𝑥−𝑚𝑖𝑛)

(𝑥𝑚𝑎𝑥−𝑥𝑚𝑖𝑛)
+ 𝑚𝑖𝑛       (10) 

Where 𝑥 is the scaled value, 𝑥𝑚𝑎𝑥 𝑎𝑛𝑑 𝑥𝑚𝑖𝑛 are a channel’s maximum and minimum values 

and 𝑚𝑎𝑥 and 𝑚𝑖𝑛 represent the scaling range.  

 

2) Segmentation, Combination and Reshaping: Raw data from the time series must be 

segmented into a fixed-width sliding window, enabling the CNN model to exploit the temporal 

correlation between samples. As mentioned, samples from each channel are segmented into 

windows of 128 samples, with sample windows from 9 channels combined together to create a 

matrix sized 128x9. Since 2D convolutional layers require 3D input sensors, input data is 

reshaped to 128x9x1. The “dstack” and “reshape” functions in Numpy library were used to 

combine and reshape the samples. 

 

3) One-Hot Encoding for Activity Labels: the activity labels provided in the UCI-HAR dataset 

consist of integer numbers between 1 and 6, each represents an activity as shown in Table 3.1. 

These activity labels are categorical data which should be converted to One-Hot encoded 

labels. Since there are 6 categories, One-Hot encoding will create a binary label vectors of size 

6, and the correct activity label is represented by 1 (Figure 3.2). Since index of arrays starts 

from 0, and the activity labels should be subtracted by one before encoding. One-Hot encoding 

could be done by using ‘to_categorical’ function from Keras library.  
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Figure 3.2: One-Hot encoding for activity labels 

3.3. Proposed Model Architectures 

As discussed in the Introduction, deep learning neural networks outperform traditional methods 

of HAR classification when dealing with large amounts of data. Convolutional Neural Network 

(CNN) and Recurrent Neural Network (RNN) architectures have often been used to develop HAR 

classification models. CNN architecture has been selected due to its high performance in previous 

cases [50] and its ability to handle small positional changes. Data segmentation allows CNN to 

exploit temporal correlations between data within one window of activity [5]. 

 

Figure 3.3: Stacked-CNN architecture and specifications 

One-Hot Encoding 
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A stacked-CNN model consisting of stacked 2-D convolutional (Conv2D), 2-D max-pooling 

(MaxPool2D), flatten, dropout and fully-connected layers has been proposed. The general model 

architecture and setting specifications used in this project are illustrated in Figure 3.3. Conv2D is 

used instead of the 1-D convolution neural network (Conv1D), the usual selection for sensor 

signals, because TensorFlow Lite, which deploys models on MCUs, only supports TensorFlow 2 

operational subsets; these subsets do not include Conv1D. The combination of sample windows 

from 9 channels are figured as an image with the dimensions 1x128x9. Each Conv2D layer is 

followed by a MaxPool2D to reduce the model complexity and increase model robustness. The 

output feature map of the last max-pooling layer feeds into the flatten layer, where feature maps 

are flattened into a 1-D tensor for further export. A dropout layer with dropping rate of 0.1 is 

inserted between the flatten and output layers to improve model generalisation. 

The training setting will contribute to the performance variation of the model; however, the 

model size will not be affected. Therefore, some parameters in the setting were set to constant 

values to facilitate the training process. The optimiser algorithm chosen for the model was Adam, 

which needs minimal computational overhead [51]. The categorical cross-entropy loss function 

was selected and used for backpropagation, as it is ideal for HAR tasks, multi-class problems with a 

single output label. The activation function used for feature extracting-layers is ReLu, selected for 

its computational simplicity, while ‘softmax’ activation fucntion is used in the output layer to 

produce a vector containing the probabilities of each class. Learning rate is set to 0.0005 to 

prevent training loss from diverging sooner than intended.  

Batch size refers to the number of samples fed into the model during each iteration, while number 

of epochs signifies the number of times the entire training dataset passes through the model. The 

number of batches is set to 64, the number of epochs is set 30.  

The performance and computational budget of a CNN model is associated with its parameters, 

including number of layers, number of filters per layer, filter size and stride. To ease the evaluation 

of the relationship between performance and overhead, several architecture configurations are 

proposed by varying the number of stacked CNN layers 𝑁 and the number of filters per layer 𝑀, 

while keeping filter size and stride constant. The details of these configurations are summarised in 

Table 3.2. 
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Table 3.2: CNN architecture configurations 

Model Constants Conv2D       : filter size = 4 x 4; stride = 2 x 4 

MaxPool2D: filter size = 2 x 2; stride = 2 x 2 

Configuration Name L1F16 L1F32 L2F16 L2F32 L3F16 L3F32 L4F16 L4F32 

No. of Layer (N) 1 1 2 2 3 3 4 4 

No. of Filter per Layer (M) 16 32 16 32 16 32 16 32 

 

3.4. Model Training, Conversion and Optimisation 

The proposed model configurations have been trained on a standard personal computer with an 

Intel Dual Core i5 CPU (1.8 GHZ) and 4 GB memory, using TensorFlow library version 2.3.1. The 

sequential model and the Conv2D, MaxPool2D, Dropout, Flatten and Dense (Fully-Connected) 

layers are taken from the Keras library. After the building and training process, the TensorFlow 

models are saved as a protocol buffer with filename extension ‘.pb’. For edge implementation, the 

model must be converted to TensorFlow Lite, which employs the FlatBuffer format. FlatBuffer is 

more memory efficient, so a size reduction is expected after this conversion. The conversion is 

performed using the converter API provided by TensorFlow Lite. The converted model (hereafter 

referred to as the TFlite model) is then stored with the extension ‘.tflite’ with an approximate 4x 

size reduction. Figure 3.4 illustrates the workflow for exporting a TensorFlow Lite model. 

 

Figure 3.4: Workflow for exporting TensorFlow Lite model [35] 

Before deploying the model on the target device, optimisation techniques, also known as post-

training quantisation, may be used to reduce model size and latency. The model uses 32-bit 

floating point data representation as a default, but such high precision is often unnecessary for 

inference. Therefore, quantisation techniques are used to convert the model’s weights and 

activations to fixed-point data representations (8-bit or 16-bit integers), which will facilitate 

computations and reduce memory footprint. Several quantisation schemes are provided by 

TensorFlow Lite that are suited to different scenarios: dynamic range quantisation, full integer 
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quantisation and float16 quantisation.  

Table 3.3: Quantisation scheme specifications [32] 

Scheme Expected optimisation Recommended for 
Dynamic range 4x smaller; 2x-3x faster Generic CPUs 

 Full integer 4x smaller; 3x+ faster Generic CPUs and MCUs 

Float16 2x smaller; GPU acceleration Generic CPUs and GPUs 

 

Dynamic range quantisation scheme act by reducing the precision of weights, from single-

precision floating-point (float32) to 8-bit integer (int8). However, the weights are converted back 

to floating-point at inference, and the outputs are also stored using floating-point representation. 

Thus, dynamic range-quantised models are expected to be 4x more memory efficient, and 2x-3x 

faster. In contrast, full integer quantisation converts all tensors into 8-bit integer, including 

activations. Therefore, it is recommended for devices using int8 data representation, e.g., MCUs. 

Full integer should give a greater latency reduction due to its simplified computation. Lastly, 

float16 is the quantisation scheme recommended for GPUs, which use 16-bit data representation. 

The size reduction effect is halved compared to 8-bit quantisation, but float16 enables GPU 

acceleration. The quantisation was applied the TFlite model using the provided API. For Full 

integer quantisation, a representative dataset was required to calibrate the variable tensors, e.g., 

activations, input and output tensors. Therefore, 100 samples from the training set were selected 

to be the representative dataset. Note that by applying quantisation, insignificant or small 

accuracy loss is expected [32]. 

After being quantised, the TFlite model was converted into a C source file containing a char array 

using the ‘xxd’ command [32]. This C source file was then incorporated in the embedded software 

developed for the target device to handle the input sensor data and output inference outcomes.  

3.5. Model Deployment & Measurement setup 

The target device selected for model deployment is the Arduino Nano 33 BLE (hereafter referred 

to as Arduino Board) described in Section 2.3.1. The Arduino Board was selected for two reasons: 

first, Arduino Nano hosts a MCU based on the Cortex-M4 chip supported by AI acceleration 

kernels, which accelerate typical computations in neural networks; second, the Arduino platform 

provides many useful built-in functions that can be used for performance evaluation, reducing 

software development time.  
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TensorFlow Lite library version 2.1.0-Alpha is used to implement the on-device inference. An 

embedded software is developed under Arduino IDE using the library in order to provide an 

interface for the TFlite model. The software is designed to: 1) incorporate the C-source file 

containing the model, which is then used to instantiate an interpreter object; 2) feed data into the 

interpreter, run inference and return the results to the PC for further analysis.  

The most intuitive way to evaluate the performance of an on-device deep learning model is to test 

it, using data collected from the device’s embedded sensors. Unfortunately, if the sensors 

embedded in the MCU differ from those used to collect the training dataset, the newly collected 

data has a different pattern and thus cannot evaluate the model’s performance. As such, an 

alternative approach has been conceived: rather than collecting raw data from the environment, 

test data from the UCI-HAR dataset is streamed directly into Arduino Board via USB, easing the 

measurement process. The models were measured and evaluated for four aspects: classification 

performance, latency, energy and memory usage. 

3.5.1. Classification Performance 

The classification performance of models in Table 3.2 are measured on both PC and Arduino Board, 

for comparison. TensorFlow provides an API to evaluate the model’s overall accuracy on a given 

test set. The test set, consisting of 2,947 sample windows, was used for accuracy measurement. If 

the dataset has an unbalanced sample distribution – for example, if there are too many samples 

for one class and too few for others – accuracy might be compromised. It is therefore worth 

evaluating the model’s performance using additional metrics.  

Confusion matrix is a tool used to evaluate classifier models. Given the model’s six activity classes, 

a 6x6 matrix is utilised (Figure 3.5) in which rows represent actual class (desired class) and columns 

represent predicted class. Every cell in the matrix is labelled; to introduce cell definitions it is 

necessary to reduce the 6x6 matrix into six 2x2 confusion matrices to enable a binary classification 

(True or False) problem. For example, Figure 3.6 shows a 2x2 confusion matrix for the class 

labelled ‘Walking’: True Positive (TP) and False Positive (FP) correspond to the number of correct 

and incorrect predictions of ‘Walking’ class; True Negative (TN) and False Negative (FN) 

correspond the number of correct and incorrect predictions of the remaining classes. 
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Figure 3.5: Confusion matrix for performance evaluation 

 

 

Figure 3.6: Confusion matrix for class ‘Walking’ 

With the aid of the confusion matrix it is possible to calculate key metrics for performance 

evaluation. These metrics include overall accuracy, precision, recall (True Positive rate) and F1 

score: 

1) Overall accuracy.  Overall accuracy is the most intuitive metric for performance evaluation, 

which is also used during training. It is calculated by dividing the total number of correct 

predictions (TP + TN) to the total number of data entries (TP + TN + FP + FN): 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑎𝑐𝑐𝑢𝑟𝑎𝑐𝑦 =  
𝑇𝑃+𝑇𝑁

𝑇𝑃+𝑇𝑁+𝐹𝑃+𝐹𝑁
     (11) 

 

2) Precision. Precision indicates how much positive predictions are correct. It is calculated by 

dividing the number of correct positive prediction (TP) to the total number of positive 

prediction (TP + FP): 

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =  
𝑇𝑃

𝑇𝑃+𝐹𝑃
      (12) 
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3) Recall (True Positive Rate). Recall is concerned with how many correct positive predictions 

have been made, when it is actually positive. It is computed by dividing correct positive 

prediction (TP) to the total number of actual positive data entries (TP + FN): 

       𝑅𝑒𝑐𝑎𝑙𝑙(𝑇𝑟𝑢𝑒 𝑃𝑜𝑠𝑖𝑡𝑖𝑣𝑒 𝑅𝑎𝑡𝑒) =  
𝑇𝑃

𝑇𝑃+𝐹𝑁
    (13) 

 

4) F1 score. F1 score acts as the harmonic mean of precision and recall, and it ranges from 0 to 1.  

It is commonly used to measure the robustness of the model, as it analyses the results in a 

comprehensive manner: 

𝐹1 𝑠𝑐𝑜𝑟𝑒 =  
2 × 𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 × 𝑅𝑒𝑐𝑎𝑙𝑙

𝑃𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 + 𝑅𝑒𝑐𝑎𝑙𝑙
=

2𝑇𝑃

2𝑇𝑃+𝐹𝑃+𝐹𝑁
        (14) 

Overall accuracy and F1 score were calculated for each of the trained models. The confusion 

matrix was plotted using the “confusion_matrix” function from scikit-learn Python library.  

3.5.2. Latency and Energy Consumption 

Latency refers to time elapsed while processing one data sample and receiving an inference result. 

The Arduino built-in function “millis()” is used to evaluate latency. “Millis()” returns time passed 

since a program’s execution in milliseconds [52]. For input data entry 𝑖, time 𝑡𝑠𝑡𝑎𝑟𝑡_𝑖 is recorded as 

soon as input data is fed into the interpreter, and 𝑡𝑒𝑛𝑑_𝑖 is recorded when the interpreter returns 

an output. Average latency in milliseconds can be computed using the following equation: 

𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦 =  
∑ 𝑡𝑒𝑛𝑑_𝑖−𝑡𝑠𝑡𝑎𝑟𝑡_𝑖

𝑛−1
𝑖=0

𝑛
              (15) 

This approach is easy to implement and avoids the need for an external timer, which may 

introduce error due to signal transmission time. Since Arduino is single-threaded, this approach 

should give a reliable estimation of the execution time taken by the interpreter to run an inference.  

Power consumption for running inference is estimated using the product specification nRF52840 

MCU hosted by Arduino Board, and the reason is given in Appendix A2. The MCU has a PMU that 

automatically switches the device between different modes depending on the demand of any 

given moment. A constant voltage 𝑉 of 3.3V is supplied to the MCU, while current consumption 

varies depending on the MCU’s execution mode. The power consumption for each case can be 

calculated using the power equation (16). 
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𝑃 = 𝑉 ×  𝐼      (16) 

where 𝐼 could be 𝐼𝑠𝑦𝑠𝑡𝑒𝑚_𝑂𝑛, 𝐼𝑠𝑦𝑠𝑡𝑒𝑚_𝐼𝑑𝑙𝑒  and 𝐼𝑠𝑦𝑠𝑡𝑒𝑚_𝑂𝑓𝑓 , the current consumption in different 

modes. The specifications for this project and power consumption calculated from (16) are 

summarised in Table 3.4. 

Table 3.4: Electrical specifications of nRF52840 in three modes[53] 

MODE Description Current Cons. (𝝁𝑨) Power Cons. (𝒎𝑾) 

System On CPU running inference 6300 20.790 

System Idle CPU idle, DMA running 1202.35 3.968 

System Off CPU off, RAM retained 1.86 0.006 

Note that the startup time for the CPU to wake up from Idle (3𝜇𝑠) or Off (16.5 𝜇𝑠) modes are 

ignored, as they are insignificant to the calculation. Calculated power consumptions are used to 

provide an estimation of energy consumption. Energy is consumed in mWh during different 

phases of a complete activity cycle.  

𝐸𝑖𝑛𝑓 = 𝑃𝑠𝑦𝑠𝑡𝑒𝑚_𝑂𝑛  ×
 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦

3600
      (17) 

𝐸𝑖𝑑𝑙𝑒 = 𝑃𝑠𝑦𝑠𝑡𝑒𝑚_𝐼𝑑𝑙𝑒  ×  
𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 

3600
    (18) 

𝐸𝑜𝑓𝑓 = 𝑃𝑠𝑦𝑠𝑡𝑒𝑚_𝑂𝑓𝑓  × 
𝑡𝑠𝑙𝑒𝑒𝑝

3600
     (19) 

where 𝐸𝑖𝑛𝑓, 𝐸𝑖𝑑𝑙𝑒  and 𝐸𝑜𝑓𝑓  signify energy consumed during inference phase, idle phase and sleep 

phase, respectively. The length of the inference phase depends on the computation speed of the 

target device and the model’s complexity. The Idle phase is the period of time taken before 

running inference, during which a full sample window is collected in “System Idle” mode, with 

the CPU awakened when data is ready. According to [49], the sampling rate of UCI-HAR dataset is 

50 Hz and the sampling time 𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔  for a 128-sample window is 2.56s. The sampling rate 

should be kept constant, as variations would change the collected signal pattern. Assuming a 

window overlap of 𝛿 (ranging from 0 to 1), 𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔  can be expressed with the following 

equation (20): 

𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔 = 2.56 ×  (1 − 𝛿)     (20) 

Sleep phase is the period of time between each activity recognition. Sleep phase is used to reduce 
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energy consumption, since continuously running inference is unnecessary in real life scenarios. 

Taking 𝑡𝐻𝐴𝑅 as the total time needed to perform one complete activity recognition, 𝑡𝑠𝑙𝑒𝑒𝑝 is 

𝑡𝑠𝑙𝑒𝑒𝑝 = 𝑡𝐻𝐴𝑅 − 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦 − 𝑡𝑠𝑎𝑚𝑝𝑙𝑖𝑛𝑔           (21) 

where 𝑡𝑙𝑎𝑡𝑒𝑛𝑐𝑦  is calculated from (15) and 𝑡𝑠𝑙𝑒𝑒𝑝 is specific to application settings. The overall 

energy consumption in 𝑚𝑊ℎ for a complete activity recognition cycle is the sum of the results of 

(17)-(19): 

𝐸𝐻𝐴𝑅 = 𝐸𝑖𝑛𝑓 +𝐸𝑖𝑑𝑙𝑒 + 𝐸𝑜𝑓𝑓       (22) 

In a real-life setting, ongoing physical activity usually lasts for at least tens of seconds; therefore, a 

time interval may be inserted between each recognition of activity, during which the device may 

be turned off to extend battery life.  

Table 3.5: Application settings for different scenarios: 

Setting inference per min(ipm) 𝒕𝑯𝑨𝑹(𝒔) Overlap (%) 𝒕𝒔𝒂𝒎𝒑𝒍𝒊𝒏𝒈(𝒔) 

S1 30 2 50 1.28 

S2 10 6 50 1.28 

S3 1 60 0 2.56 

Three HAR application settings are proposed in Table 3.5. S1 assumes cases where continuous 

activity recognition is required to ensure prompt and accurate inference. S2 makes a trade-off 

between promptness and energy efficiency by inserting a few seconds of interval between 

inferences; this should provide satisfactory results in most cases. S3 concerns scenarios in which 

distant activity recognition is needed to determine user status, e.g., determining whether a user 

has been in one position for a certain period of time. Given a standard coin battery capacity 

𝐸𝑏𝑎𝑡𝑡 = 100 𝑚𝑊ℎ and using information from Tables 3.6 and 3.7, as well as results calculated 

from (15) and (22), expected battery run-time is calculated as follows: 

𝑡𝑏𝑎𝑡𝑡𝑒𝑟𝑦 =
𝐸𝑏𝑎𝑡𝑡𝑒𝑟𝑦

(𝑖𝑝𝑚×60)×𝐸𝐻𝐴𝑅
      (23) 

3.5.3. Memory Usage 

TFlite models do not rely on dynamic memory allocation while running inference [35]. Rather, a 

fixed RAM area called the Tensor Arena is allocated beforehand to store input and output tensors, 

and any intermediate arrays. The overall memory usage of a TFlite model is the sum of the Tensor 
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Arena’s memory and that of the model itself (ROM): 

𝑂𝑣𝑒𝑟𝑎𝑙𝑙 𝑀𝑒𝑚𝑜𝑟𝑦 𝑈𝑠𝑎𝑔𝑒 = 𝑇𝑒𝑛𝑠𝑜𝑟 𝐴𝑟𝑒𝑛𝑎 𝑆𝑖𝑧𝑒(𝑅𝐴𝑀)   + 𝑇𝐹𝑙𝑖𝑡𝑒 𝑀𝑜𝑑𝑒𝑙 𝑆𝑖𝑧𝑒(𝑅𝑂𝑀)       (24) 

The size of a model could be directly observed on a PC. However, the size of the Tensor Arena 

depends on both the TFlite model and the target device’s architecture, which makes providing a 

quick and accurate estimation of memory needed for the Tensor Arena impossible. This project, 

therefore, sets the Tensor Arena size to 100KB, which is big enough to accommodate all evaluated 

models, and only takes the TFlite model size into consideration. This approach ensures that the 

evaluation of smaller-sized models, which need less of the Tensor Arena’s memory, is not biased.  

4. Result and Discussion  

 

Figure 4.1: Confusion matrix for performance measurement of model L1F16 

The results obtained during the implementation of models proposed in Table 3.2 of Section 3 are 

given in this section. The models were evaluated both on PC and on Arduino board for different 

aspects during different stage of implementation.  
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4.1. Model Evaluation on PC 

4.1.1. Classification Performance of Proposed Models 

After the building and training process, a set of TensorFlow models were obtained using the 

proposed architecture configurations in Table 3.2 of Section 3, which were measured using two 

metrics: overall accuracy and F1 score. Confusion matrices were plotted for each of the proposed 

models.  

Figure 4.1 shows the 6x6 confusion matrix for model L1F16. The overall accuracy of the model was 

shown at the right bottom cell and it was calculated using (11). The precision and recall of each 

class were calculated using (12) and (13), and they were shown at the lowest row and right-most 

column respectively. Then, the class-wise F1 score was computed using (14), and an average F1 

score of the model was recorded in Table 4.1, which summarises the measurement results and the 

size of TensorFlow models. 

Table 4.1: Performance and memory usage of proposed models 

Model    Accuracy (%) F1 score Model Size (KB) 

L1F16 84.93 0.849 319 

L1F32 86.73 0.865 509 

L2F16 90.46 0.904 224 

L2F32 92.26 0.923 395 

L3F16 90.19 0.901 283 

L3F32 91.18 0.911 581 

L4F16 85.65 0.856 358 

L4F32 89.79 0.900 797 

As shown in Table 4.1, there was no big discrepancies between overall accuracy and the F1 score 

of each model, meaning that the models were robust, and the dataset was balanced. Thus, the 

overall accuracy could be reliably used as the metric of performance evaluation in the remaining 

part of project. For models with same number of layers, the model with a greater number of filters 

had better performance and bigger size. For example, L2F32 outperformed L2F16 by 1.8% in 

accuracy at the cost of an increased model size of 171KB. Generally, the models with two-layer 

configuration performed better and used less memory, as Figure 4.2 suggested.  
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Figure 4.2: No. of Layer vs Model Size vs Model Accuracy 

To evaluate further the relationship between model size and performance of two-layer models, 

three additional models, L2F8, L2F64 and L2F128 were trained and tested in addition to L2F16 and 

L2F32. 

 

Figure 4.3: Effect of increasing number of filters per layer on model size 

As shown in Figure 4.3, the increased complexity of a model enhanced model accuracy. However, 

as filter numbers grew exponentially, the upward trend of accuracy decreased: from 32 to 64, 

filters accuracy increased by 1.26% and model size increased by 606 KB, indicating that 100 KB 

would bring about 0.2% of accuracy growth. However, from 64 to 128 filters, 100 KB of model size 

growth only brought about a 0.025% accuracy increase. Since the two-layer models tested 
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exhibited promising performance and there was a positive correlation between their performance 

and size, they were brought to the next stage of implementation for further evaluation. 

4.1.2. Effect of TensorFlow Lite Optimisation  

TensorFlow Lite provides model optimization via conversion and quantisation. The two-layer 

models were converted to the ‘.tflite’ format using the converter API, provided by TensorFlow Lite. 

These TFlite models were then further optimised through quantisation techniques. The effects of 

the conversion and quantisation were measured by testing the converted models. Model size and 

accuracy are provided in Tables 4.2 and 4.3, respectively.  

Table 4.2: Optimisation effects on the model size 

TFlite 
Model 

Size Before 
conversion (KB) 

No Quantisation 
Size (KB) 

Float16  

Size (KB)  

Full integer 
Size (KB) 

Dynamic range 
Size (KB) 

L2F8 174 13 10 8 7 

L2F16 224 29 18 13 12 

L2F32 395 86 47 27 26 

L2F64 1001 297 155 83 78 

L2F128 3358 1075 554 288 279 

 The conversion to the ‘.tflite’ format showed significant improvement for model size, especially for 

smaller models. The size of L2F8 went from 174 KB to 13 KB, more than a 13x reduction. Less size 

reduction was observed for more complex models like L2F64 and L2F128, which were reduced by 

around 3x in size. The TFlite models were further compressed with quantisation techniques: TFlite 

models were 1.3x to 1.9x smaller with float16 quantisation, 1.6x to 3.7x smaller with full integer 

quantisation and 1.9x to 3.9x smaller with dynamic range quantisation. Notably, TFlite model size 

was positively correlated to the effect of size reduction when applying quantisation. 

Table 4.3: Optimisation effects on the model accuracy 

TFlite 
Model 

Accuracy Before 
conversion (%) 

No Quantisation 
Accuracy (%) 

Float16  

Accuracy (%)  

Full integer  
Accuracy (%) 

Dynamic range 
Accuracy (%) 

L2F8 84.09 84.09 84.09 82.97 83.85 

L2F16 90.46 90.46 90.46 90.26 90.3 

L2F32 92.26 92.26 92.26 92.26 92.3 

L2F64 92.94 92.94 92.94 92.53 92.84 

L2F128 93.52 93.52 93.52 93.45 93.59 



Department of Electrical and Electronic Engineering Page 31 

According to the results in Table 4.3, model accuracy was unchanged after conversion to TFlite 

model and application of float16 quantisation, while insignificant accuracy loss was observed with 

full integer and dynamic range quantisation. After being quantised with a full integer scheme, L2F8, 

L2F16, L2F64 and L2F128 lost 1.12%, 0.2%, 0.41% and 0.07% accuracy, respectively. Dynamic 

range quantisation caused accuracy losses of 0.24%, 0.16% and 0.1% to L2F8, L2F16 and L2F64, 

respectively. Intriguingly, L2F32 and L2F128 gained small accuracy improvements (0.04% and 

0.07%, respectively) after dynamic range quantisation. 

4.2. Model Evaluation on Device 

The TFlite models from the previous section, both quantised and non-quantised, were deployed 

on Arduino Board for an on-device performance evaluation. Three key aspects of on-device 

implementation were evaluated: accuracy, inference latency and energy consumption.  

In terms of accuracy, the PC measurement results from the previous section should have remained 

valid for any target device, assuming the correct implementation. After repeated accuracy 

measurements on Arduino Board, the same inference results were returned. In contrast, a model’s 

latency is dependent on the target device due to different computational speeds. Latency was 

measured for TFlite models before and after quantisation. Only full integer quantisation was 

supported for implementation on MCUs, as other quantisation schemes would cause the board to 

crash. Results of latency measurements are shown in Table 4.4. 

 Table 4.4: Latency comparison between non-quantised and full integer-quantised models 

TFlite Model No Quantisation Latency (𝒎𝒔) Full integer Latency (𝒎𝒔) 

L2F8 82 14 

L2F16 204 22 

L2F32 569 46 

L2F64 1782 122 

L2F128 N/A 393 

Only L2F8 had an average latency below 100 milliseconds, while the latency of the remaining 

models far exceeded an acceptable range for real-time HAR applications. The effect of a full 

integer quantisation on latency was significant, with the models’ average latency reduced by 5.9x 

to 14.6x+. It was not possible to evaluate the latency reduction effect of L2F128, which was too 

large to fit in the board without quantisation. High latency would invoke high energy consumption, 
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which is not ideal for embedded devices. Therefore, only full integer-quantised models were 

evaluated for energy consumption. Using (17), the estimated energy consumption of quantised 

models was computed: 

Table 4.5: Estimation of energy consumed by full integer-quantised models to run one inference 

TFlite Model 𝑬𝒊𝒏𝒇 (𝝁𝑾𝒉) 

L2F8 0.081 

L2F16 0.127 

L2F32 0.266 

L2F64 0.705 

L2F128 2.270 

𝐸𝑖𝑛𝑓  is a critical indicator used to determine whether a specific neural network could be 

reasonably implemented on embedded devices. Due to the low-power characteristic, embedded 

devices exclude any power intensive application. Considering the three application settings 

proposed in Table 3.5 of Section 3, the expected battery lifespan 𝑡𝑏𝑎𝑡𝑡𝑒𝑟𝑦  could be calculated using 

(23).  

Table 4.6: Summary of estimated energy and expected battery run-time under different settings 

TFlite Model 𝒕𝒃𝒂𝒕𝒕𝒆𝒓𝒚 in S1 (h) 𝒕𝒃𝒂𝒕𝒕𝒆𝒓𝒚 in S2 (h) 𝒕𝒃𝒂𝒕𝒕𝒆𝒓𝒚 in S3 (h) 

L2F8 37  111  556  

L2F16 36  108  547  

L2F32 33  99  523  

L2F64 26  78  460  

L2F128 15  45  321  

According to the results in Table 4.6, even L2F128, the most computationally intensive model, 

would be able to run continuously on board for at least 15 hours in S1 setting, which implies that 

the run-time of the recognition system would cover the most part of the day, without the need to 

recharge or replace the battery. For many real-life applications, such as elderly monitoring, the S3 

setting is the most reasonable choice. The best performing model, L2F32, was estimated to have 

around three weeks of run-time.  
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5. Discussion and Conclusion 

5.1. General Discussion 

The proposed models were successfully implemented and measured on the target device, and the 

relationship between model performance and computational budget was evaluated. The state-of-

the-art optimisation techniques for embedded devices were applied to the models, and the effects 

were assessed. These techniques exhibited promising effects on model speedup and size 

reduction at the cost of minimal accuracy loss. These techniques would enable the deployment of 

more complex and accurate network on low-power devices for fast and reliable on-device 

inference. Moreover, the lightest model tested in this project was only 7 KB in size, and its 

accuracy was 84.09%. This implies that the lightweight deep learning methods could be 

implemented on devices with an extremely low computational resource.  

Another contribution of this project is the evaluation of energy consumption at different 

quantisation levels and neural network complexity was measured, using which an evaluation of 

battery lifespan was done to approach real-life settings. The aim of this battery lifespan evaluation 

was to offer guidance for future works, which might make use of the above evaluation procedures 

as reference. The application settings could vary greatly depending on the real-world 

requirements, and it was impossible to provide an exhaustive list of settings. Three representative 

settings were proposed and evaluated. Results from the S1 setting demonstrated that complex 

neural networks are now able to meet real-life requirements. On the other hand, results from the 

S3 setting proved the practicability of neural network-based HAR solutions.  

5.2. Conclusion 

In this project, a review of literature was conducted to aid the selection of software tools and 

hardware platform for on-device implementation. A set of CNN models of different complexities 

were proposed, trained and tested on PC using TensorFlow. These models achieved performance 

similar to previous works, with be best performing model obtained an overall accuracy of 93.52%. 

The models were then converted to a memory efficient format to be integrated into the 

embedded software developed using TensorFlow Lite. The converted models showed a size 

reduction of 3x to 13x, and then were deployed on Arduino board. Then the models were further 

optimised and measured. Overall, quantised models achieved latency reduction for up to 14.6x, 

and size reduction for up to 3.9x. The overall performance of the tested models was discussed in 
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the previous section, concluding that deep learning methods for HAR on MCU are highly 

practicable.  

5.3. Limitations and Future Works 

This project was subject to several limitations. Firstly, the models were not trained using self-

collected data. As such, even if they displayed high accuracy on the chosen dataset, it is not 

possible to perform human activity recognition using the on-device models, as the data collected 

by the embedded sensor are strange for the model. This limited the possibility of testing the whole 

HAR system in real-life settings. Secondly, TensorFLow Lite is still in phase of development, and 

LSTM operators were not fully supported.  

For future works, it is recommended to work on self-collected dataset so that the overall system 

could be evaluated in a comprehensive manner. In addition, with the advances in unsupervised 

learning algorithms, it might be worth to investigate what could be done using unsupervised 

learning. 

6. References 

[1] C. A. Ronao and S. B. Cho, “Human activity recognition with smartphone sensors using deep 

learning neural networks,” Expert Syst. Appl., vol. 59, pp. 235–244, 2016. 

[2] J. Manjarres, P. Narvaez, K. Gasser, W. Percybrooks and M. Pardo, “Physical Workload 

Tracking Using Human Activity Recognition with Wearable Devices,” Sensors (Basel), 2019. 

[3] L. Lai and N. Suda, "Enabling Deep Learning at the LoT Edge," 2018 IEEE/ACM International 

Conference on Computer-Aided Design (ICCAD), San Diego, CA, 2018, pp. 1-6 

[4] M. Mukherjee, R. Matam, C. X. Mavromoustakis, H. Jiang, G. Mastorakis and M. Guo, 

"Intelligent Edge Computing: Security and Privacy Challenges," in IEEE Communications 

Magazine, vol. 58, no. 9, pp. 26-31, September 2020. 

[5] T. Zebin, P. J. Scully, N. Peek, A. J. Casson, and K. B. Ozanyan, “Design and Implementation of 

a Convolutional Neural Network on an Edge Computing Smartphone for Human Activity 

Recognition,” IEEE Access, vol. 7, pp. 133509–133520, 2019. 

[6] P. -E. Novac, A. Castagnetti, A. Russo, B. Miramond, A. Pegatoquet and F. Verdier, "Toward 

unsupervised Human Activity Recognition on Microcontroller Units," 2020 23rd Euromicro 

Conference on Digital System Design (DSD), Kranj, Slovenia, 2020, pp. 542-550 

[7] N. Oukrich “Daily Human Activity Recognition in Smart Home based on Feature Selection, 

Neural Network and Load Signature of Appliances,” 2019. 

[8] V. Menger, F. Scheepers and M. Spruit, “Comparing Deep Learning and Classical Machine 

Learning Approaches for Predicting Inpatient Violence Incidents from Clinical Text,” Appl. Sci. 

2018, 8, 981. 



Department of Electrical and Electronic Engineering Page 35 

[9] Z. Ghahramani, “Unsupervised Learning,” In: Bousquet O., von Luxburg U., Rätsch G. (eds) 

Advanced Lectures on Machine Learning. ML 2003. Lecture Notes in Computer Science, 

2004, pp. 72-112. 

[10] D. Lara and M. A. Labrador, “A survey on human activity recognition using wearable 

sensors,” IEEE Commun. Surv. Tutorials, vol. 15, no. 3, pp. 1192–1209, 2013. 

[11] M. A. R. Ahad, J. K. Tan, H. S. Kim and S. Ishikawa, "Human activity recognition: Various 

paradigms," ICCAS, pp. 1896-1901, 2008. 

[12] Y. Lecun, Y. Bengio, and G. Hinton, “Deep learning,” Nature, vol. 521, no. 7553, pp. 436–444, 

2015. 

[13] Y. Bengio, “Learning deep architectures for AI,” Found. Trends Mach. Learn., vol. 2, no. 1. 

2009. 

[14] K. Fukushima, “Neocognitron: A self-organizing neural network model for a mechanism of 

pattern recognition unaffected by shift in position,” Biol. Cybernetics 36, pp. 193–202, 1980. 

[15] Y. LeCun, L. Bottou, Y. Bengio, and P. Haffner, “Gradient-based learning applied to document 

recognition,” Proc. IEEE, vol. 86, no. 11, pp. 2278–2323, 1998. 

[16] A. Krizhevsky, I. Sutskever, and G. E. Hinton, “ImageNet Classification with Deep 

Convolutional Neural Networks,” Adv Neural Inf Process Syst, vol. 25, pp.1097-1105, 2012. 

[17] S. Ioffe and C. Szegedy, "Batch normalization: Accelerating deep network training by 

reducing internal covariate shift," ICML, 2015. 

[18] J. Mao, W. Xu, Y. Yang, J. Wang, Z. Huang, and A. Yuille, “Deep captioning with multimodal 

recurrent neural networks (m-rnn),”  arXiv, 2014  

[19] Y. Bengio, P. Simard and P. Frasconi, “Learning long-term dependencies with gradient 

descent is difficult,” IEEE Trans. Neural Networks 5, pp. 157–166, 1994 

[20] S. Hochreiter and J. Schmidhuber, “Long short-term memory,” Neural Comput. vol. 9, 

pp.1735–1780, 1997.  

[21] T. Zebin, M. Sperrin, N. Peek, and A. J. Casson, “Human activity recognition from inertial 

sensor time-series using batch normalized deep LSTM recurrent networks,” Proc. Annu. Int. 

Conf. IEEE Eng. Med. Biol. Soc. EMBS, pp. 1–4, 2018. 

[22] W. Shi, J. Cao, Q. Zhang, Y. Li and L. Xu, “Edge computing: Vision and challenges,” IEEE 

internet of things journal, vol.3, no.5, pp. 647-646, 2016. 

[23] “Edge TPU.” [Online]. Available: https://cloud.google.com/edge-tpu/ 

[24]  “Arduino Nano 33 BLE Sense.” [Online]. Available: https://store.arduino.cc/usa/nano-33-

ble-sense 

[25]  “Apollo3 Blue Datasheet.” [Online]. Available: 

https://cdn.sparkfun.com/assets/c/1/b/7/6/Apollo3_Blue_MCU_Data_Sheet_v0_10_0.pdf 

[26] L. Lai, N. Suda and V. Chandra, “Cmsis-nn: Efficient neural network kernels for arm cortex-m 

cpus,” arXiv, 2018.(26) 

[27] A. G. Howard et al., “Mobilenets: Efficient convolutional neural networks for mobile vision 

applications,” arXiv , 2017. 

[28] D. Lin, S. Talathi and S. Annapureddy, "Fixed point quantization of deep convolutional 

networks", ICML, pp. 2849-2858, 2016. 

[29] R. Banner, Y. Nahshan, E. Hoffer and D. Soudry, “Post-training 4-bit quantization of 

convolution networks for rapid-deployment,” arXiv, 2018. 

https://cloud.google.com/edge-tpu/
https://store.arduino.cc/usa/nano-33-ble-sense
https://store.arduino.cc/usa/nano-33-ble-sense
https://cdn.sparkfun.com/assets/c/1/b/7/6/Apollo3_Blue_MCU_Data_Sheet_v0_10_0.pdf


Department of Electrical and Electronic Engineering Page 36 

[30] S. Gupta, A. Agrawal, K. Gopalakrishnan and P. Narayanan, “Deep learning with limited 

numerical precision,” ICML, 2015. PMLR. 

[31] B. Jacob, S. Kligys, B. Chen, M. Zhu, M. Tang, A. Howard, H. Adam and D. Kalenichenko, 

“Quantization and training of neural networks for efficient integer-arithmetic-only 

inference.” Proc. IEEE CVPR, pp. 2704-2713, 2018. 

[32] “Tensorflow Lite.”[Online]. Available: https://www.tensorflow.org/lite/guide 

[33] PyTorch Mobile, 2021 [online] Available: https://pytorch.org/mobile/home/ 

[34] M. Abadi et al., “TensorFlow: Large-scale machine learning on heterogeneous distributed 

systems,” CoRR, vol. abs/1603.04467, pp. 1–19, 2016 

[35] R. David et al., “Tensorflow lite micro: Embedded machine learning on tinyml systems,” arXiv, 

2020. 

[36] “Embedded Learning Library.” [Online]. Available https://microsoft.github.io/ELL/ 

[37] “STM32 solutions for Artificial Neural Network.” [Online]. Available: 

https://www.st.com/content/st_com/en/ecosystems/stm32-ann.html 

[38] L. Bao, and S. S. Intille, “Activity recognition from user-annotated acceleration data,” ICPCA, 

2004. 

[39] U. Maurer, A. Smailagic, D. P. Siewiorek and M. Deisher, “Activity recognition and monitoring 

using multiple sensors on different body positions,” IWWIBSN (BSN'06). IEEE, 2006. 

[40] C. Zhu and W. Sheng, “Human daily activity recognition in robot-assisted living using multi-

sensor fusion,” ICRA, pp. 2154-2159, IEEE, 2009. 

[41] F. J. Ordóñez and D. Roggen, “Deep convolutional and LSTM recurrent neural networks for 

multimodal wearable activity recognition,” Sensors (Switzerland), vol. 16, no. 1, 2016. 

[42] Y. Zhang, N. Suda, L. Lai and V. Chandra, “Hello edge: Keyword spotting on microcontrollers,”, 

2017. 

[43] K. Chen, D. Zhang, L. Yao, B. Guo, Z. Yu and Y. Liu, “Deep learning for sensor-based human 

activity recognition: overview, challenges and opportunities,” arXiv, 2020. 

[44] H. F. Nweke, Y. W. Teh, M. A. Al-Garadi and U. R. Alo, “Deep learning algorithms for human 

activity recognition using mobile and wearable sensor networks: State of the art and 

research challenges”. Expert Syst. Appl., v.105, pp. 233-261, 2018. 

[45] J. Chen and X. Ran, “Deep Learning With Edge Computing: A Review,” Proc. IEEE vol.107, 

no.5, pp.1655-1674, 2019 

[46] R. Chavarriaga et al., "The Opportunity challenge: A benchmark database for on-body 

sensor-based activity recognition," Pattern Recognit. Lett., vol. 34, no. 15, pp. 2033-2042, 

2009. 

[47] A. Reiss and D. Stricker, "Introducing a new benchmarked dataset for activity 

monitoring," Proc. 16th Int. Symp. Wearable Comput., pp. 108-109, 2012. 

[48] G. M. Weiss, K. Yoneda and T. Hayajneh, "Smartphone and Smartwatch-Based Biometrics 

Using Activities of Daily Living," in IEEE Access, vol. 7, pp. 133190-133202, 2019. 

[49] D. Anguita, A. Ghio, L. Oneto, X. Parra and J. L. Reyes-Ortiz, “A public domain dataset for 

human activity recognition using smartphones,” In Esann, vol. 3, p. 3. 

[50] N. Y. Hammerla, S. Halloran, and T. Plötz, “Deep, convolutional, and recurrent models for 

human activity recognition using wearables,” IJCAI Int. Jt. Conf. Artif. Intell., vol. 2016-Janua, 

pp. 1533–1540, 2016. 

https://www.tensorflow.org/lite/guide
https://pytorch.org/mobile/home/
https://microsoft.github.io/ELL/
https://www.st.com/content/st_com/en/ecosystems/stm32-ann.html


Department of Electrical and Electronic Engineering Page 37 

[51] D. P. Kingma and J. L. Ba, “Adam: A method for stochastic optimization,” ICLR, 2015 

[52] “Language Reference.” [Online]. Available: https://www.arduino.cc/reference/en/ 

[53] “nRF52840 Product Specification.” [Online]. Available: 

https://content.arduino.cc/assets/Nano_BLE_MCU-nRF52840_PS_v1.1.pdf 

 

 

 

  

https://www.arduino.cc/reference/en/
https://content.arduino.cc/assets/Nano_BLE_MCU-nRF52840_PS_v1.1.pdf


Department of Electrical and Electronic Engineering Page 38 

7. Appendices 

7.1. Appendix 1 – Code 

All code used during this project can be found in the following GitHub repository: 

https://github.com/laiwenq/CNN_on_Arduino_Nano 

The repository contains: 1) Python code used to pre-process dataset, build, train and test model 

on PC; 2) Scripts used to communicate with Arduino board via USB; 3) Embedded software 

developed for Arduino board to run inference, return inference result and latency. 

7.2. Appendix 2 – Covid19 statement 

Ideally, a laboratory power analyser should be used to measure the electrical quantities required 

for the energy evaluation. Unfortunately, due to the ongoing circumstance and export control, this 

was not possible. Therefore, an alternative approach was to look at the product specification. This 

document provided electrical specification for every possible scenario, which could be used in the 

estimation. This approach of might not be very accurate, but it guarantees that the estimation will 

not diverge too much from the true value. 
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