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Abstract—Voice disorders affect millions of people world-
wide. Surface electromyography-based Silent Speech Interfaces
(sEMG-based SSIs) have been explored as a potential solution
for decades. However, previous works were limited by small
vocabularies and manually extracted features from raw data. To
address these limitations, we propose a lightweight deep learning
knowledge-distilled ensemble model for sEMG-based SSI (KDE-
SSI). Our model can classify a 26 NATO phonetic alphabets
dataset with 3900 data samples, enabling the unambiguous
generation of any English word through spelling. Extensive
experiments validate the effectiveness of KDE-SSI, achieving a
test accuracy of 85.9%. Our findings also shed light on an end-
to-end system for portable, practical equipment.

Index Terms—NATO alphabet, Surface EMG, ResNet, Ensem-
ble method, Knowledge distillation

I. INTRODUCTION

Normal communication is not always possible. According
to a report from the American Speech-Language-Hearing
Association (ASHA), nearly 40 million US citizens have
communication disorders, which cost the US approximately
154 − 186 a billion dollars annually. Diseases that lead to
language impairments include brain injuries (e.g., aphasia,
apraxia, and dysarthria) and voice disorders, where there are
disturbances in the vocal folds or any other organ involved
in voice production. Surface electromyographic signal-based
SSIs (sEMG-based SSIs) are one of the standard solutions
to voice disorder [1], which recognises speech from EMG
signals recorded from speech-related facial muscles in a non-
invasive manner (via the electrodes attached to the skin). The
electrodes are easy to apply, requiring no medical supervision
and certification. Most useful information in sEMG signals is
in the frequency band between 15Hz and 450Hz [2].
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The initial research of sEMG-based SSI dates back to
the mid-1980s [3], [4]. Until the early-2000s, the literature
mainly focused on few words classification and achieved high
accuracy [5], [6]. However, limited vocabulary made those
systems less usable in practice. Approaches to address this
issue included dividing the word into sub-word units [7] or
learning the phonetic feature in a data-driven manner [8].
Those methods promoted the sEMG-based SSI towards contin-
uous speech recognition, but the methods were mainly based
on traditional machine learning and manually engineered fea-
tures (Decision Tree, Linear Discriminant Analysis, Gaussian
Mixture Model), and words regenerated from dissembled
syllabuses could be erroneous. Most recently, deep learning-
based methods have thrived and significantly improved over
conventional models [9]. AlterEgo, utilising CNN, proposed
a product that did not require users explicitly mouth their
speech with pronounced, apparent facial movements [10].
Nevertheless, the currently available product usually relies on
expensive sensors and are less affordable.

In this work, we innovatively applied a new proposed deep-
learning method to classify the International Radiotelephony
Spelling Alphabet with a commercially off-the-shelf (COTS)
device. The International Radiotelephony Spelling Alphabet,
commonly known as the NATO (North Atlantic Treaty Or-
ganization) phonetic alphabet or ICAO (International Civil
Aviation Organization) phonetic alphabet, is the most widely
used set of clear code words for communicating the letters of
the Roman alphabet over the phone or military radio [11]. Each
“code word” in the alphabet stands for its initial letter. The 26
code words and their corresponding alphabetical symbol are
listed in Table I. With the help of the NATO alphabet, any
word constructed from the 26 Roman character can be spelt
unambiguously.

The main contribution of our work is threefold: 1) construct
a 26 words NATO phonetic alphabet dataset (3900 data sam-
ples in total) from the facial sEMG signals of 5 male subjects;
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Fig. 1. The overall workflow of the project. Data collection: collect 3900 data samples of 3 facial muscles from 5 subjects using the Bitalino MuscleBLT
bundle and OpenSignals software; Signal processing: standard EMG signal processing steps followed by word extraction; Model construction: using ResNet1D
as the backbone, the ensemble model applies soft voting and achieves a better result than any single model; Result analysis: the performance of baseline
model, ensemble model with a different number of backbones, and KDE-SSI with different temperatures are presented.

TABLE I
NATO PHONETIC ALPHABET.

Phonetic Alphabet

A - Alpha J - Juliet S - Sierra
B - Bravo K - Kilo T - Tango
C - Charlie L - Lima U - Uniform
D - Delta M - Mike V - Victor
E - Echo N - November W - Whisket
F - Faxtrot O - Oscar X - X-Ray
G - Golf P - Papa Y - Yankee
H - Hotel Q - Quebec Z - Zulu
I - India R - Romeo

2) achieve 81.2% test accuracy for the single model on the
created dataset; 3) implement a Knowledge Distilled Ensem-
ble Model for Silent Speech Interface (KDE-SSI), which is
a lightweight convolutional network that efficiently extracts
knowledge from a pre-trained voting ensemble ResNet model
(VE-ResNet) while maintaining performance. It outperforms
any backbones, achieving 85.9% accuracy.

In the following sections, the article explains the technical
details. The overall workflow is shown in Figure 1. Section II
introduces the dataset and collection procedure; section III
illustrates the signal processing pipeline; section IV explains
the method used, and section V discusses the results obtained
and their implications.

II. DATASET

We collected 30 × 26 = 780 samples for each of the five
subjects, totalling 3900 (150 per class). The hardware, sensor
placement, and software used in this project are introduced
below.

A. Hardware and Sensor Placement

The hardware used in data collection was the BITalino
MuscleBIT bundle, containing a pre-assembled BITalino Core
(onboard microprocessor, Bluetooth device and battery), four
assembled sEMG sensors with prefixed electrode distance
(1.5cm), one reference cable, a Bluetooth dongle, and pre-
gelled self-adhesive disposable Ag/AgCl electrodes.

Three speech-related facial muscles were selected: levator
anguli oris (LAO), depressor anguli oris (DAO), and zygo-
maticus major (ZM). The electrodes were placed between the
motor unit and the tendinous insertion of the muscle, with their
longitudinal axes aligned with the midline of the muscle [12].

B. Software

The software used in data collection was OpenSignals, an
easy-to-use and versatile software suite for real-time bio-
signals visualisation. It was compatible with the BITalino
MuscleBIT bundle and communicates through Bluetooth.

Data was collected in 1000 Hz (to satisfy the Nyquist
sampling rate) from three channels simultaneously and the raw
data was stored in the local computer in H5 format.

C. Data Collection Protocol

Data were collected from 5 male subjects aged from 22 to
24. Before the data collection, subjects sat comfortably in front
of a desk with sensors attached to their faces. Each subject
was asked to collect the data for the 26 words in sequence.
For each word, 3 trials were carried out. In each trial, the
word was repeated for 10 times. The subjects should finish
mouthing the word in 2 seconds and rest another 2 seconds
before taking the next try. Hence, each trial lasted around 1
minute, and the collection section for each subject lasted for
around 2 hours.

III. SIGNAL PROCESSING

Before the data could be used to train the model, certain
pre-processing steps were required. Two stages were involved:
1) the standard EMG signal processing, which eliminated the
noises in the raw signal and acquired the enveloped-data; 2)
word extraction, which extracted the 10 words from the data
stream.

A. Standard EMG Signal Processing

First, the raw EMG data was changed from the H5 data to
the CSV format. Then the following steps were taken:

Zero-mean: the mean was subtracted from each channel.



Denoising: wavelet denoising has proved effective in bio-
signal processing since it has good frequency resolution at
high frequencies; thus, the noise components in a signal can be
isolated while important high-frequency transients can also be
preserved [13]. This project used Daubechies wavelets (db2)
at decomposition level 4 and soft minimax thresholding.

Filtering: as stated in the Section I, most useful sEMG sig-
nals are located between 15-28 Hz to 400-450 Hz. Most low-
frequency noises come from the skin-electrode interface: the
muscle movements underneath the skin cause the movement
artefact noise. Meanwhile, most of the high-frequency noises
are random noises. Hence, a 10th order Butterworth filter
was implemented. The low-pass and high-pass filter corner
frequencies were set to 400 Hz and 20 Hz, respectively.

Rectification: Full-wave rectification took the absolute
value of all the negative values and turned them positive.

Envelope: RMS envelope was extracted from the raw data.
It was calculated by computing the root-mean-square (RMS)
value of the signal within a window that slides across the
signal. The formula is shown in (1). Here x(n) is the rectified
signal, Nw is the window length which is 100ms×1000Hz =
100, L is the length of the data, and e(n) is the envelope value
calculated from the window located at time step n.

e(n) =

√√√√√ 1

Nw

Nw/2∑
N∈−Nw/2

x(n+N)2, (1)

n ∈ [Nw/2,Nw/2 + 1, ...L−Nw/2− 1, L−Nw/2]

The data before and after standard EMG signal processing
are shown in Figure 2.

Fig. 2. sEMG signal from levator anguli oris (LAO). (a) Raw data. (b)
Processed data before envelope. (c) Envelopes and peaks extracted from
processed data.

B. Word Extraction

Three steps were involved in word extraction: peak detec-
tion, peak localisation, and word localisation.

Peak detection: we detected 10 peaks corresponding to the
10 words, ensuring no internal peaks within a single word
are included. On the one hand, the interval between peaks
was forced to be larger than 3000 samples (3s). On the other
hand, if more than 10 peaks were detected, only the top 10
most prominent peaks were stored.

Peak Location: notice the peak detection was performed
channel-wise. Thus, the three peaks detected from the three
channels of a specific word might not be aligned. Hence, peak
localisation was conducted to find the mutually recognised
peak among the channels. The median value of the three-
channel peaks was selected empirically as the mutually recog-
nised peak for a certain word.

Word Location: the peak may not always be the centre of
a word signal. Therefore, a sliding window of size [1500, 3]
(1500 samples, 3 channels) was implemented to localise the
word from each of the mutually recognised peaks: the window
centre shifted from the peak − 150 to the peak + 150 with a
10 step size, and the centre with the maximum within-window
power (sum of the channel power) was selected as the optimal
final word centre. The data from the corresponding window
was extracted as the final data.

The optimal final word centres are shown by the crosses in
Figure 2 (c). A sample data is shown in Figure 3.

Fig. 3. A sample data after processing and extraction pipeline.

IV. METHOD

A. Overview

The proposed KDE-SSI method is summarised in Figure 4.
The model contains three parts: the Backbone, the Ensemble
module, and the Knowledge Distillation module. The follow-
ing parts explain each module in detail.

B. Backbone: ResNet1D

We tested several well-known deep learning architectures
as the backbone models. According to the result in Table II,
ResNet1D had the best performance and was selected for the
ensemble module.

We implemented a 29-layer 1D ResNet (ResNet1D), which
contained 14 residual blocks, each comprising two 1D con-
volutional layers for extracting time-series features and a skip
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Fig. 4. The architecture of KDE-SSI. ResNet1D backbone is shown at the
bottom: there are 29 convolutional layers in total; the Ensemble module is
shown in the red block: VE-ResNet takes the probability from the N backbone
model and performs a weighted average to get the final ensemble probability;
The knowledge distillation module is shown the green boxes: the student
model, training with ground truth label using cross-entropy Loss, also mimic
the ensemble probability from the teacher VE-ResNet with KL Divergence.

connection to alleviate the degradation problem for the deep
network [14].

C. Ensemble: VE-ResNet

The voting ensemble is a conventional ensemble learning
method for improving model generalisation ability by combin-
ing the predictions from multiple models [15]. In this study, a
voting ensemble ResNet model (VE-ResNet) for the Silent
Speech Interface was proposed, which used the ResNet1D
as the backbone for training the voting ensemble classifier.
In terms of the optimisation procedure, each ResNet1D was
trained independently as a base estimator on the same training
and validation set. The soft voting strategy (Equation 2) was
applied to merge the predictions from N base estimators
Θ = {Θ1,Θ2, . . . ,ΘN} into a final label prediction result.
Given the input sEMG signals x, the voting ensemble clas-
sifier prediction could be mathematically represented as the
following:

pve =

N∑
i=1

wiP (Θi(x) = c)

ŷ = argmax
c

pve (2)

Where P (Θi(x) = c) indicates the probability that Θi

predicts x belongs to the category c, 0 ≤ wi ≤ 1 denotes
the weight of associated with the base estimator Θi, and pve

is the final weighted averaged probability output of the VE-
ResNet model. ŷ is the model prediction, which is the class
with the highest probability in pve.

D. Knowledge Distillation: KDE-SSI

The classic Knowledge distillation (KD) technique proposed
by [16], also known as Vanilla KD, was applied to reduce the
complexity of our network as it has been proven effective
in reducing the memory footprint and accelerating network

inference with minor fluctuations in accuracy [17]. Vanilla KD
is an offline method requiring a teacher model pre-trained to
its optimum and a temperature SoftMax (T-SoftMax) function,
which is defined as Equation 3, where zi is the class i input to
the T-SoftMax, T is the temperature coefficient, and pi is the
output probability for class i. Higher T produces softer labels
(smoother probability distribution).

pi =
exp( ziT )∑
j exp(

zj
T )

(3)

The loss used to train the student model was the weighted
average of two losses (Equation 4). Minimising the KL di-
vergence loss DKL forced the student model to match the
prediction of the teacher model. First, the student logits zs and
teacher output probability pve went through the T-SoftMax
with temperature T . Then, the DKL loss is calculated as the
KL divergence of the two new probabilities.

The cross-entropy loss H was added to help when the
entropy of soft labels (output of teacher model) was low
[16]. The student logits zs went through a standard SoftMax
(T = 1), and the H loss was calculated using the SoftMax
result and the ground truths y (hard-labels).

L(x; Θ) = αT 2DKL(σ(zs, T ), σ(pve, T ))

+ (1− α)H(y, σ(zs, T = 1)) (4)

For the following experiments, we set the weight α of the
loss function to 0.5, so each loss contributes equally.

E. Experimental Setup

The dataset was divided at a ratio of 4:1:1, generating
a training set, a validation set and a test set, respectively.
All evaluated methods were trained using Adaptation Mo-
mentum Estimation (Adam) optimizer in 100 epochs. The
early stopping strategy was applied to stop training procedures
earlier to prevent unexpected overfitting problems. Models
were trained and tested on a Tesla P100 PCIe 16 GB, and
all codes were implemented in Pytorch and available here:
https://github.com/laiwenq/AML Lymsy.

To verify the superiority of our proposed method, 4
conventional deep learning methods, including Transformer,
ResNet1D, CNN-LSTM, and VGG13, were implemented and
compared in terms of precision, recall, F1-score and accuracy.
The best-performing architecture was chosen as the backbone
for VE-ResNet. Four VE-ResNet consisting of different num-
ber of ResNet1D (N = 4, 6, 8 and 10) were obtained and
distilled using different temperatures (T = 5 and 10).

V. RESULT AND DISCUSSION

A. Results

The performance of 4 evaluated conventional models is
summarised in Table II. ResNet1D greatly outperformed the
counterparts on the test set among all evaluated methods,
achieving the highest scores on all four metrics. VGG13
achieved the second-best performance with an accuracy of
76.1%. Although Transformer and LSTM variations were

https://github.com/laiwenq/AML_Lymsy


regarded as the gold standard tools for time-series analysis,
their four metrics scores were consistently worse than pure
CNN-based models (e.g., VGG13, ResNet1D), with at least
15% decrement in accuracy. Since ResNet1D was the most
promising among evaluated methods, it was used as the back-
bone architecture of the proposed voting ensemble classifier.

TABLE II
PERFORMANCE OF 6 EVALUATED METHODS ON 26 NATO ALPHABET

CLASSIFICATIONS. N = 6 FOR VE-RESNET AND KDE-SSI.

Methods Precision (%) Recall (%) F1-score Accuracy (%)
CNN-LSTM 57.4 56.4 0.562 56.4
Transformer 61.5 60.1 0.595 60.6

VGG13 76.8 76.2 0.757 76.1
ResNet1D 81.8 81.0 0.810 81.2
VE-ResNet 86.3 86.0 0.857 86.0
KDE-SSI 87.4 85.7 0.855 85.9

As shown in Table III, VE-ResNet with N = 4 scored
the highest before distillation, giving an accuracy of 88.0%,
while VE-ResNet with N = 6 and 10 tied for second place
with 86.0% accuracy. After the distillation, all models were
decreased in accuracy, and the reduction was inversely related
to the value of T .

TABLE III
ACCURACY OF VE-RESNET WITH N ESTIMATORS (N = 4, 6, 8, 10).

# of Estimators VE-ResNet KDE-SSI (T=5) KDE-SSI (T=10)
4 88.0 83.2 84.5
6 86.0 85.7 85.9
8 85.7 84.6 85.2
10 86.0 84.9 85.7

At T = 5, KDE-SSI distilled from 6 estimators only had a
0.3% of accuracy decrement, while both KDE-SSI with N =
8 and 10 had a 1.1% of reduction. Surprisingly, the KDE-SSI
distilled from the best-performing VE-ResNet was impacted
the most by the distillation, resulting in 4.8% of accuracy loss.

At T = 10, the accuracy reduction was attenuated. In partic-
ular, KDE-SSI with N = 6 further approached the accuracy of
its teacher model with a negligible accuracy reduction (0.1%).

From the learning curve illustrated in Figure 5, we observed
that both VE-ResNet with N = 6 and its corresponding
KDE-SSI distilled with T = 10 increased their validation
accuracy progressively with the number of epochs and did
not demonstrate any overfitting problem.

As expected, a minor accuracy gap between the two models
is visible at the end of the training procedure. KDE-SSI was
around 20.8x faster and 7.0x smaller compared to VE-ResNet.
The results in Table IV show that KDE-SSI could generate
predictions with at least 0.80 F1-score for most classes,
except the words Charlie, Delta, Golf, India, Quebec, Romeo
and Zulu, which indicates a significant difference between
precision and recall for these words.
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Fig. 5. Learning curves of VE-ResNet and KDE-SSI with N = 6 and T = 10
on the validation set. The average inference time per sample is 2.50ms and
0.12ms, respectively.

TABLE IV
PERFORMANCE OF BEST PERFORMING KDE-SSI ON 26 NATO ALPHABET

CLASSIFICATION.

Class Precision (%) Recall (%) F1-score
Alfa 96.4 100.0 0.982

Bravo 92.3 96.0 0.941
Charlie 91.7 52.4 0.667
Delta 65.7 100.0 0.793
Echo 82.6 79.2 0.809

Foxtrot 96.6 96.6 0.966
Golf 66.7 88.9 0.762
Hotel 95.2 83.3 0.889
India 93.8 65.2 0.769
Juliett 85.7 85.7 0.857
Kilo 90.3 96.6 0.933
Lima 94.4 94.4 0.944
Mike 89.7 89.7 0.897

November 100.0 87.5 0.933
Oscar 87.1 90.0 0.885
Papa 94.7 85.7 0.900

Quebec 100.0 60.0 0.750
Romeo 70.0 84.0 0.764
Juliett 85.7 85.7 0.857
Sierra 100.0 76.2 0.865
Tango 80.0 82.8 0.814

Uniform 91.3 77.8 0.840
Victor 92.3 85.7 0.889

Whiskey 72.7 88.9 0.800
X-ray 100.0 90.9 0.952

Yankee 81.8 96.4 0.885
Zulu 61.7 95.5 0.750

B. Discussion

During the teacher model pre-training stage, we identified
the most suitable architecture to fulfil the requirement. As
summarised in [18], LSTM-based approaches, such as CNN-
LSTM, were unsuitable for long time-series classification
problems since they could not efficiently capture long-term
temporal dependencies in long sequences.

The vanilla Transformer performed poorly in our task
because the long-range modelling ability of the Transformer



was limited by the training data scarcity. Furthermore, the
Transformer does not analyse its input sequentially. Using
only a conventional absolute position encoding module to learn
temporal information in a three-channel sEMG signal might
introduce excessive randomness into the attention and limit
the model’s expressiveness [19].

Pure CNN-based methods (VGG13 and ResNet1D) exhib-
ited far more outstanding performance than their counterparts,
which aligned with the findings from [20]. ResNet1D, bene-
fiting from skip connections, outperformed VGG13 in terms
of resisting overfitting and gradient vanishing problems. All
evaluated models showed similar performance on all metrics,
implying that the models tend to give a similar amount of
positive and negative predictions.

Ensembling multiple ResNet1D by soft voting showed a
great performance boost in our experiment. The underlying ef-
fect of varying the N was not fully understood, as VE-ResNet
with the fewest estimators performed the best; however, it had
a steep accuracy drop after distillation. A potential explanation
was that the soft labels produced by the best VE-ResNet were
very distinctive between classes, making the student hard to
match. Increasing the T might be a solution since we found
that training KDE-SSI with a higher temperature helps the
student learn better from the teacher model; however, the
convergence would be slower.

For the best KDE-SSI, we traded negligible accuracy for
enormous complexity reduction, making the final model suit-
able for deployment to the target users. From The inter-
class performance of best performing KDE-SSI (Table IV),
we observed that well-learned classes exhibited low variance
between the performance metrics. For the hard classes, the
model tended to prioritise one type of prediction over the other
(more positive than negative, or vice versa). This is a sign of
poor learning, which could result from multiple factors, such
as the inherent lack of enough information. For some words,
3 facial muscles could not provide sufficient information. For
example, people generally do not rely on the chosen muscles to
pronounce the word Charlie; having more sensors monitoring
the tongue or other muscles might be helpful.

VI. CONCLUSION

In this work, we proposed a novel lightweight knowledge-
distilled ensemble model for a Silent Speech Interface (KDE-
SSI) with a COTS device. We achieved 85.9% accuracy in
distinguishing the 26 NATO phonetic alphabet using sEMG
signals collected from 3 facial muscles. However, KDE-SSI
still necessitates a two-stage training procedure (i.e., pre-
training and ensembling followed by distillation). Therefore,
future work could investigate online distillation approaches
capable of simultaneously training a teacher ensemble and
student model, resulting in an end-to-end solution for an
sEMG-based Silent Speech Interface. Furthermore, domain
adaptation approaches could be used to bridge the inter-
subject/inter-gender domain shift. A fuzzy matching algorithm
could be designed to maintain the usability of KDE-SSI so that

KDE-SSI does not necessarily need to recognise every single
NATO word correctly.
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